Spaces:
Paused
Paused
import gradio as gr | |
import torch | |
from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel, UniPCMultistepScheduler | |
from huggingface_hub import login | |
import os | |
import spaces | |
from PIL import Image | |
# Log in to Hugging Face with your token | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
# Model IDs for Stable Diffusion 1.5 and ControlNet | |
model_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
controlnet_id = "InstantX/SD3-Controlnet-Tile" | |
# Load the ControlNet model and Stable Diffusion pipeline | |
controlnet = SD3ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16) | |
pipe = StableDiffusion3ControlNetPipeline.from_pretrained( | |
model_id, controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to("cuda") | |
def generate_image(prompt, reference_image, controlnet_conditioning_scale): | |
# Prepare the reference image for ControlNet | |
reference_image = reference_image.convert("RGB").resize((1024, 1024), Image.LANCZOS) | |
# Generate the image with ControlNet conditioning | |
generated_image = pipe( | |
prompt=prompt, | |
control_image=reference_image, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale=7.5, | |
num_inference_steps=75 # Increased from 50 to refine quality | |
).images[0] | |
return generated_image | |
# Set up Gradio interface | |
interface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Image(type="pil", label="Reference Image (Style)"), | |
gr.Slider(label="Control Net Conditioning Scale", minimum=0.5, maximum=2.0, step=0.1, value=1.0), | |
], | |
outputs="image", | |
title="Image Generation with Stable Diffusion 3.5 and ControlNet", | |
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3.5 with ControlNet." | |
) | |
# Launch the Gradio interface | |
interface.launch() | |