test_gradio / app.py
amos1088's picture
test gradio
a55b025
raw
history blame
1.99 kB
import gradio as gr
import torch
from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel, UniPCMultistepScheduler
from huggingface_hub import login
import os
import spaces
from PIL import Image
# Log in to Hugging Face with your token
token = os.getenv("HF_TOKEN")
login(token=token)
# Model IDs for Stable Diffusion 1.5 and ControlNet
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
controlnet_id = "InstantX/SD3-Controlnet-Tile"
# Load the ControlNet model and Stable Diffusion pipeline
controlnet = SD3ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16)
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
@spaces.GPU
def generate_image(prompt, reference_image, controlnet_conditioning_scale):
# Prepare the reference image for ControlNet
reference_image = reference_image.convert("RGB").resize((1024, 1024), Image.LANCZOS)
# Generate the image with ControlNet conditioning
generated_image = pipe(
prompt=prompt,
control_image=reference_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=7.5,
num_inference_steps=75 # Increased from 50 to refine quality
).images[0]
return generated_image
# Set up Gradio interface
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Image(type="pil", label="Reference Image (Style)"),
gr.Slider(label="Control Net Conditioning Scale", minimum=0.5, maximum=2.0, step=0.1, value=1.0),
],
outputs="image",
title="Image Generation with Stable Diffusion 3.5 and ControlNet",
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3.5 with ControlNet."
)
# Launch the Gradio interface
interface.launch()