Spaces:
Paused
Paused
# Copyright (c) 2022 Caroline Chan | |
# | |
# MIT License | |
import torch.nn as nn | |
from ...modeling_utils import ModelMixin | |
norm_layer = nn.InstanceNorm2d | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_features: int): | |
super(ResidualBlock, self).__init__() | |
conv_block = [ | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
nn.ReLU(inplace=True), | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
] | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, x): | |
return x + self.conv_block(x) | |
class Generator(ModelMixin): | |
def __init__(self, input_nc: int = 3, output_nc: int = 1, n_residual_blocks: int = 3, sigmoid: bool = True): | |
super(Generator, self).__init__() | |
# Initial convolution block | |
model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True)] | |
self.model0 = nn.Sequential(*model0) | |
# Downsampling | |
model1 = [] | |
in_features = 64 | |
out_features = in_features * 2 | |
for _ in range(2): | |
model1 += [ | |
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True), | |
] | |
in_features = out_features | |
out_features = in_features * 2 | |
self.model1 = nn.Sequential(*model1) | |
model2 = [] | |
# Residual blocks | |
for _ in range(n_residual_blocks): | |
model2 += [ResidualBlock(in_features)] | |
self.model2 = nn.Sequential(*model2) | |
# Upsampling | |
model3 = [] | |
out_features = in_features // 2 | |
for _ in range(2): | |
model3 += [ | |
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True), | |
] | |
in_features = out_features | |
out_features = in_features // 2 | |
self.model3 = nn.Sequential(*model3) | |
# Output layer | |
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] | |
if sigmoid: | |
model4 += [nn.Sigmoid()] | |
self.model4 = nn.Sequential(*model4) | |
def forward(self, x): | |
out = self.model0(x) | |
out = self.model1(out) | |
out = self.model2(out) | |
out = self.model3(out) | |
out = self.model4(out) | |
return out | |