amos1088 commited on
Commit
43107ac
·
1 Parent(s): a88d434

test gradio

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -16,22 +16,22 @@ login(token=token)
16
 
17
 
18
  pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda")
19
- pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
20
 
21
 
22
 
23
  @spaces.GPU
24
- def generate_image(prompt, reference_image, controlnet_conditioning_scale):
25
- style_image = Image.open(reference_image)
 
26
  # reference_image.resize((512, 512))
27
  scale = {
28
- "up": {"block_0": [0.0, controlnet_conditioning_scale, 0.0]},
29
  }
30
- pipeline.set_ip_adapter_scale(scale)
31
 
32
  image = pipeline(
33
  prompt=prompt,
34
- ip_adapter_image=style_image,
35
  negative_prompt="",
36
  guidance_scale=5,
37
  num_inference_steps=30,
@@ -44,7 +44,7 @@ interface = gr.Interface(
44
  fn=generate_image,
45
  inputs=[
46
  gr.Textbox(label="Prompt"),
47
- gr.Image( type= "filepath",label="Reference Image (Style)"),
48
  gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=0.6),
49
  ],
50
  outputs="image",
 
16
 
17
 
18
  pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda")
 
19
 
20
 
21
 
22
  @spaces.GPU
23
+ def generate_image(prompt, reference_images, controlnet_conditioning_scale):
24
+ pipeline.load_ip_adapter(["h94/IP-Adapter"]*len(reference_images), subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
25
+ style_images = [Image.open(reference_image) for reference_image in reference_images]
26
  # reference_image.resize((512, 512))
27
  scale = {
28
+ "up": {"block_0": [0.0, controlnet_conditioning_scale/len(reference_images), 0.0]},
29
  }
30
+ pipeline.set_ip_adapter_scale([scale]*len(reference_images))
31
 
32
  image = pipeline(
33
  prompt=prompt,
34
+ ip_adapter_image=style_images,
35
  negative_prompt="",
36
  guidance_scale=5,
37
  num_inference_steps=30,
 
44
  fn=generate_image,
45
  inputs=[
46
  gr.Textbox(label="Prompt"),
47
+ gr.inputs.File(file_count="multiple"),
48
  gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=0.6),
49
  ],
50
  outputs="image",