Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -1,70 +1,59 @@
|
|
1 |
-
import torch
|
2 |
-
from diffusers.models import MotionAdapter
|
3 |
-
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
|
4 |
-
from diffusers.utils import export_to_gif
|
5 |
-
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import login
|
8 |
import os
|
9 |
import spaces,tempfile
|
10 |
import torch
|
11 |
-
from diffusers import
|
12 |
-
from
|
13 |
-
import
|
14 |
-
from diffusers import
|
15 |
-
from diffusers import AutoPipelineForText2Image
|
16 |
-
from diffusers.utils import load_image
|
17 |
-
import torch
|
18 |
-
from diffusers.models import MotionAdapter
|
19 |
-
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
|
20 |
-
from diffusers.utils import export_to_gif
|
21 |
-
|
22 |
token = os.getenv("HF_TOKEN")
|
23 |
login(token=token)
|
24 |
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
model_id,
|
31 |
subfolder="scheduler",
|
32 |
-
clip_sample=False,
|
33 |
-
timestep_spacing="linspace",
|
34 |
beta_schedule="linear",
|
35 |
-
|
|
|
36 |
)
|
37 |
-
pipe =
|
38 |
model_id,
|
39 |
-
motion_adapter=
|
|
|
|
|
40 |
scheduler=scheduler,
|
41 |
torch_dtype=torch.float16,
|
42 |
-
|
43 |
-
|
44 |
-
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
45 |
-
|
46 |
-
# enable memory savings
|
47 |
-
pipe.enable_vae_slicing()
|
48 |
-
pipe.enable_vae_tiling()
|
49 |
-
pipeline = pipe
|
50 |
|
51 |
|
52 |
@spaces.GPU
|
53 |
def generate_image(prompt, reference_image, controlnet_conditioning_scale,num_frames):
|
54 |
-
style_images = [load_image(f) for f in reference_image]
|
55 |
-
|
56 |
-
pipeline.set_ip_adapter_scale(controlnet_conditioning_scale)
|
57 |
|
58 |
-
|
59 |
prompt=prompt,
|
60 |
-
|
61 |
-
|
62 |
-
guidance_scale=5,
|
63 |
-
num_inference_steps=30,
|
64 |
num_frames=num_frames,
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
return "animation.gif"
|
70 |
|
@@ -74,7 +63,7 @@ interface = gr.Interface(
|
|
74 |
inputs=[
|
75 |
gr.Textbox(label="Prompt"),
|
76 |
# gr.Image( type= "filepath",label="Reference Image (Style)"),
|
77 |
-
gr.File(type="
|
78 |
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
79 |
gr.Slider(label="Number of frames", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import login
|
3 |
import os
|
4 |
import spaces,tempfile
|
5 |
import torch
|
6 |
+
from diffusers import AnimateDiffSparseControlNetPipeline
|
7 |
+
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
|
8 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
9 |
+
from diffusers.utils import export_to_gif, load_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
token = os.getenv("HF_TOKEN")
|
11 |
login(token=token)
|
12 |
|
13 |
|
14 |
+
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
15 |
+
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
|
16 |
+
controlnet_id = "guoyww/animatediff-sparsectrl-rgb"
|
17 |
+
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
|
18 |
+
vae_id = "stabilityai/sd-vae-ft-mse"
|
19 |
+
device = "cuda"
|
20 |
|
21 |
+
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
|
22 |
+
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
|
23 |
+
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
|
24 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
25 |
model_id,
|
26 |
subfolder="scheduler",
|
|
|
|
|
27 |
beta_schedule="linear",
|
28 |
+
algorithm_type="dpmsolver++",
|
29 |
+
use_karras_sigmas=True,
|
30 |
)
|
31 |
+
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
|
32 |
model_id,
|
33 |
+
motion_adapter=motion_adapter,
|
34 |
+
controlnet=controlnet,
|
35 |
+
vae=vae,
|
36 |
scheduler=scheduler,
|
37 |
torch_dtype=torch.float16,
|
38 |
+
).to(device)
|
39 |
+
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
@spaces.GPU
|
43 |
def generate_image(prompt, reference_image, controlnet_conditioning_scale,num_frames):
|
44 |
+
style_images = [load_image(f.name) for f in reference_image]
|
|
|
|
|
45 |
|
46 |
+
video = pipe(
|
47 |
prompt=prompt,
|
48 |
+
negative_prompt="low quality, worst quality",
|
49 |
+
num_inference_steps=25,
|
|
|
|
|
50 |
num_frames=num_frames,
|
51 |
+
conditioning_frames=style_images,
|
52 |
+
controlnet_frame_indices=[0],
|
53 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
54 |
+
generator=torch.Generator().manual_seed(42),
|
55 |
+
).frames[0]
|
56 |
+
export_to_gif(video, "output.gif")
|
57 |
|
58 |
return "animation.gif"
|
59 |
|
|
|
63 |
inputs=[
|
64 |
gr.Textbox(label="Prompt"),
|
65 |
# gr.Image( type= "filepath",label="Reference Image (Style)"),
|
66 |
+
gr.File(type="file",file_count="multiple",label="Reference Image (Style)"),
|
67 |
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
68 |
gr.Slider(label="Number of frames", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
69 |
|