Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -1,20 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from PIL import Image
|
4 |
from models.transformer_sd3 import SD3Transformer2DModel
|
5 |
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
6 |
import os
|
|
|
7 |
from huggingface_hub import login
|
8 |
-
|
9 |
token = os.getenv("HF_TOKEN")
|
10 |
login(token=token)
|
11 |
|
12 |
-
# Model and
|
13 |
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
14 |
ip_adapter_path = './ip-adapter.bin'
|
15 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
16 |
|
17 |
-
# Load
|
18 |
transformer = SD3Transformer2DModel.from_pretrained(
|
19 |
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
20 |
)
|
@@ -22,6 +21,7 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
22 |
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
23 |
).to("cuda")
|
24 |
|
|
|
25 |
pipe.init_ipadapter(
|
26 |
ip_adapter_path=ip_adapter_path,
|
27 |
image_encoder_path=image_encoder_path,
|
@@ -29,38 +29,44 @@ pipe.init_ipadapter(
|
|
29 |
)
|
30 |
|
31 |
|
32 |
-
@
|
33 |
-
def gui_generation(
|
34 |
"""
|
35 |
-
Generate
|
36 |
"""
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
negative_prompt="",
|
44 |
num_inference_steps=24,
|
45 |
guidance_scale=5.0,
|
46 |
-
generator=
|
47 |
-
|
48 |
-
ipadapter_scale=0.5,
|
49 |
-
).images[0]
|
50 |
-
return output
|
51 |
|
|
|
52 |
|
53 |
-
# Gradio UI elements
|
54 |
-
image_input = gr.Image(type="pil", label="Input Image")
|
55 |
-
style_image_input = gr.Image(type="pil", label="Style Image")
|
56 |
-
output_image = gr.Image(label="Generated Image")
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from models.transformer_sd3 import SD3Transformer2DModel
|
4 |
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
5 |
import os
|
6 |
+
import spaces
|
7 |
from huggingface_hub import login
|
|
|
8 |
token = os.getenv("HF_TOKEN")
|
9 |
login(token=token)
|
10 |
|
11 |
+
# Model and Pipeline Setup
|
12 |
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
13 |
ip_adapter_path = './ip-adapter.bin'
|
14 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
15 |
|
16 |
+
# Load transformer and pipeline
|
17 |
transformer = SD3Transformer2DModel.from_pretrained(
|
18 |
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
19 |
)
|
|
|
21 |
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
22 |
).to("cuda")
|
23 |
|
24 |
+
# Initialize IP Adapter
|
25 |
pipe.init_ipadapter(
|
26 |
ip_adapter_path=ip_adapter_path,
|
27 |
image_encoder_path=image_encoder_path,
|
|
|
29 |
)
|
30 |
|
31 |
|
32 |
+
@spaces.GPU
|
33 |
+
def gui_generation(text, num_imgs, width, height):
|
34 |
"""
|
35 |
+
Generate images using Stable Diffusion 3.5
|
36 |
"""
|
37 |
+
images = pipe(
|
38 |
+
prompt=text,
|
39 |
+
width=width,
|
40 |
+
height=height,
|
41 |
+
num_images_per_prompt=num_imgs,
|
42 |
+
negative_prompt="lowres, low quality, worst quality",
|
|
|
43 |
num_inference_steps=24,
|
44 |
guidance_scale=5.0,
|
45 |
+
generator=torch.Generator("cuda").manual_seed(42),
|
46 |
+
).images
|
|
|
|
|
|
|
47 |
|
48 |
+
return images
|
49 |
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Create Gradio interface
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
gr.Markdown("# Stable Diffusion 3.5 Image Generation")
|
54 |
+
|
55 |
+
with gr.Row():
|
56 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your image generation prompt")
|
57 |
+
number_slider = gr.Slider(1, 30, value=2, step=1, label="Batch size")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
width_slider = gr.Slider(256, 1536, value=1024, step=64, label="Width")
|
61 |
+
height_slider = gr.Slider(256, 1536, value=1024, step=64, label="Height")
|
62 |
+
|
63 |
+
gallery = gr.Gallery(columns=[3], rows=[1], object_fit="contain", height="auto")
|
64 |
+
|
65 |
+
generate_btn = gr.Button("Generate")
|
66 |
|
67 |
+
generate_btn.click(
|
68 |
+
fn=gui_generation,
|
69 |
+
inputs=[prompt_box, number_slider, width_slider, height_slider],
|
70 |
+
outputs=gallery
|
71 |
+
)
|
72 |
+
demo.launch()
|