Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import (
|
4 |
-
|
5 |
ControlNetModel,
|
6 |
-
|
7 |
AutoencoderKL,
|
8 |
UniPCMultistepScheduler,
|
9 |
)
|
@@ -21,18 +21,18 @@ controlnet_id = "lllyasviel/control_v11p_sd15_inpaint"
|
|
21 |
|
22 |
# Load each model component required by the pipeline
|
23 |
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16)
|
24 |
-
|
25 |
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
|
26 |
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id)
|
27 |
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
|
28 |
tokenizer = CLIPTokenizer.from_pretrained(model_id)
|
29 |
|
30 |
# Initialize the pipeline with all components
|
31 |
-
pipeline =
|
|
|
32 |
vae=vae,
|
33 |
text_encoder=text_encoder,
|
34 |
tokenizer=tokenizer,
|
35 |
-
unet=unet,
|
36 |
controlnet=controlnet,
|
37 |
scheduler=UniPCMultistepScheduler.from_config({"name": "UniPCMultistepScheduler"}),
|
38 |
feature_extractor=feature_extractor,
|
@@ -69,7 +69,7 @@ interface = gr.Interface(
|
|
69 |
],
|
70 |
outputs="image",
|
71 |
title="Image Generation with ControlNet (Reference-Only Style Transfer)",
|
72 |
-
description="Generates an image based on a text prompt and style reference image using Stable Diffusion and ControlNet (reference-only mode)."
|
73 |
)
|
74 |
|
75 |
# Launch the Gradio interface
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import (
|
4 |
+
StableDiffusion3Pipeline, # For SD3 models like Stable Diffusion 3.5
|
5 |
ControlNetModel,
|
6 |
+
SD3Transformer2DModel, # Replacing UNet with SD3 transformer
|
7 |
AutoencoderKL,
|
8 |
UniPCMultistepScheduler,
|
9 |
)
|
|
|
21 |
|
22 |
# Load each model component required by the pipeline
|
23 |
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16)
|
24 |
+
transformer = SD3Transformer2DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
|
25 |
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
|
26 |
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id)
|
27 |
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
|
28 |
tokenizer = CLIPTokenizer.from_pretrained(model_id)
|
29 |
|
30 |
# Initialize the pipeline with all components
|
31 |
+
pipeline = StableDiffusion3Pipeline(
|
32 |
+
transformer=transformer, # Using SD3 transformer
|
33 |
vae=vae,
|
34 |
text_encoder=text_encoder,
|
35 |
tokenizer=tokenizer,
|
|
|
36 |
controlnet=controlnet,
|
37 |
scheduler=UniPCMultistepScheduler.from_config({"name": "UniPCMultistepScheduler"}),
|
38 |
feature_extractor=feature_extractor,
|
|
|
69 |
],
|
70 |
outputs="image",
|
71 |
title="Image Generation with ControlNet (Reference-Only Style Transfer)",
|
72 |
+
description="Generates an image based on a text prompt and style reference image using Stable Diffusion 3.5 and ControlNet (reference-only mode)."
|
73 |
)
|
74 |
|
75 |
# Launch the Gradio interface
|