Spaces:
Paused
Paused
uuu
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ import torch
|
|
12 |
from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel
|
13 |
from diffusers.utils import load_image
|
14 |
from image_gen_aux import DepthPreprocessor
|
|
|
15 |
|
16 |
# ----------------------------
|
17 |
# Step 1: Download IP Adapter if not exists
|
@@ -51,18 +52,21 @@ image_encoder_path = "google/siglip-so400m-patch14-384"
|
|
51 |
|
52 |
|
53 |
controlnet = SD3ControlNetModel.from_pretrained("stabilityai/stable-diffusion-3.5-large-controlnet-depth", torch_dtype=torch.float16)
|
54 |
-
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
55 |
-
"stabilityai/stable-diffusion-3.5-large",
|
56 |
-
controlnet=controlnet,
|
57 |
-
torch_dtype=torch.float16,
|
58 |
-
).to("cuda")
|
59 |
|
60 |
-
|
61 |
ip_adapter_path=ip_adapter_path,
|
62 |
image_encoder_path=image_encoder_path,
|
63 |
nb_token=64,
|
|
|
64 |
)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
# ----------------------------
|
@@ -77,6 +81,8 @@ def gui_generation(prompt,negative_prompt, ref_img, guidance_scale, ipadapter_sc
|
|
77 |
control_image = depth_preprocessor(image, invert=True)[0].convert("RGB")
|
78 |
|
79 |
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
|
|
|
80 |
image = pipe(
|
81 |
width=1024,
|
82 |
height=1024,
|
@@ -88,7 +94,6 @@ def gui_generation(prompt,negative_prompt, ref_img, guidance_scale, ipadapter_sc
|
|
88 |
num_inference_steps=40,
|
89 |
generator=generator,
|
90 |
max_sequence_length=77,
|
91 |
-
ipadapter_scale=ipadapter_scale,
|
92 |
).images[0]
|
93 |
|
94 |
return image
|
|
|
12 |
from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel
|
13 |
from diffusers.utils import load_image
|
14 |
from image_gen_aux import DepthPreprocessor
|
15 |
+
from diffusers.models import SD3ControlNetModel, T2IAdapter
|
16 |
|
17 |
# ----------------------------
|
18 |
# Step 1: Download IP Adapter if not exists
|
|
|
52 |
|
53 |
|
54 |
controlnet = SD3ControlNetModel.from_pretrained("stabilityai/stable-diffusion-3.5-large-controlnet-depth", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
adapter = T2IAdapter.from_pretrained(
|
57 |
ip_adapter_path=ip_adapter_path,
|
58 |
image_encoder_path=image_encoder_path,
|
59 |
nb_token=64,
|
60 |
+
torch_dtype=torch.float16
|
61 |
)
|
62 |
|
63 |
+
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
64 |
+
"stabilityai/stable-diffusion-3.5-large",
|
65 |
+
controlnet=controlnet,adapter=adapter,
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
).to("cuda")
|
68 |
+
|
69 |
+
|
70 |
|
71 |
|
72 |
# ----------------------------
|
|
|
81 |
control_image = depth_preprocessor(image, invert=True)[0].convert("RGB")
|
82 |
|
83 |
generator = torch.Generator(device="cpu").manual_seed(0)
|
84 |
+
pipe.set_ip_adapter_scale(ipadapter_scale) # Adjust the scale as needed
|
85 |
+
|
86 |
image = pipe(
|
87 |
width=1024,
|
88 |
height=1024,
|
|
|
94 |
num_inference_steps=40,
|
95 |
generator=generator,
|
96 |
max_sequence_length=77,
|
|
|
97 |
).images[0]
|
98 |
|
99 |
return image
|