Spaces:
Paused
Paused
uuu
Browse files
app.py
CHANGED
@@ -34,30 +34,6 @@ if not token:
|
|
34 |
raise ValueError("Hugging Face token not found. Set the 'HF_TOKEN' environment variable.")
|
35 |
login(token=token)
|
36 |
|
37 |
-
# ----------------------------
|
38 |
-
# Step 3: Model Paths
|
39 |
-
# ----------------------------
|
40 |
-
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
41 |
-
ip_adapter_path = './ip-adapter.bin'
|
42 |
-
image_encoder_path = "google/siglip-so400m-patch14-384"
|
43 |
-
|
44 |
-
# ----------------------------
|
45 |
-
# Step 4: Load Transformer and Pipeline
|
46 |
-
# ----------------------------
|
47 |
-
transformer = SD3Transformer2DModel.from_pretrained(
|
48 |
-
model_path, subfolder="transformer", torch_dtype=torch.float16
|
49 |
-
)
|
50 |
-
|
51 |
-
pipe = StableDiffusion3Pipeline.from_pretrained(
|
52 |
-
model_path, transformer=transformer, torch_dtype=torch.float16
|
53 |
-
).to("cuda")
|
54 |
-
|
55 |
-
pipe.init_ipadapter(
|
56 |
-
ip_adapter_path=ip_adapter_path,
|
57 |
-
image_encoder_path=image_encoder_path,
|
58 |
-
nb_token=64,
|
59 |
-
)
|
60 |
-
|
61 |
|
62 |
|
63 |
# ----------------------------
|
@@ -65,31 +41,39 @@ pipe.init_ipadapter(
|
|
65 |
# ----------------------------
|
66 |
@spaces.GPU
|
67 |
def gui_generation(prompt, ref_img, guidance_scale, ipadapter_scale):
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
return image
|
95 |
|
|
|
34 |
raise ValueError("Hugging Face token not found. Set the 'HF_TOKEN' environment variable.")
|
35 |
login(token=token)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
# ----------------------------
|
|
|
41 |
# ----------------------------
|
42 |
@spaces.GPU
|
43 |
def gui_generation(prompt, ref_img, guidance_scale, ipadapter_scale):
|
44 |
+
|
45 |
+
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
46 |
+
ip_adapter_path = './ip-adapter.bin'
|
47 |
+
image_encoder_path = "google/siglip-so400m-patch14-384"
|
48 |
+
|
49 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
50 |
+
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
51 |
+
)
|
52 |
+
|
53 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
54 |
+
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
55 |
+
).to("cuda")
|
56 |
+
|
57 |
+
pipe.init_ipadapter(
|
58 |
+
ip_adapter_path=ip_adapter_path,
|
59 |
+
image_encoder_path=image_encoder_path,
|
60 |
+
nb_token=64,
|
61 |
+
)
|
62 |
+
|
63 |
+
ref_img = load_image(ref_img.name).convert('RGB')
|
64 |
+
|
65 |
+
# please note that SD3.5 Large is sensitive to highres generation like 1536x1536
|
66 |
+
image = pipe(
|
67 |
+
width=1024,
|
68 |
+
height=1024,
|
69 |
+
prompt=prompt,
|
70 |
+
negative_prompt="lowres, low quality, worst quality",
|
71 |
+
num_inference_steps=24,
|
72 |
+
guidance_scale=guidance_scale,
|
73 |
+
generator=torch.Generator("cuda").manual_seed(42),
|
74 |
+
clip_image=ref_img,
|
75 |
+
ipadapter_scale=ipadapter_scale,
|
76 |
+
).images[0]
|
77 |
|
78 |
return image
|
79 |
|