amos1088 commited on
Commit
feede18
·
1 Parent(s): 2f80dcf

test gradio

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -6,12 +6,15 @@ import os
6
  import spaces
7
  from diffusers import StableDiffusion3ControlNetPipeline
8
  from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
 
 
9
  # Log in to Hugging Face with your token
10
  token = os.getenv("HF_TOKEN")
11
  login(token=token)
12
 
13
  controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile")
14
  pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet)
 
15
 
16
 
17
  @spaces.GPU
@@ -20,7 +23,7 @@ def generate_image(prompt, reference_image, controlnet_conditioning_scale):
20
  # Generate the image with ControlNet conditioning
21
  generated_image = pipe(
22
  prompt=prompt,
23
- control_image=reference_image.resize((512, 512)),
24
  controlnet_conditioning_scale=controlnet_conditioning_scale,
25
  ).images[0]
26
  return generated_image
@@ -30,7 +33,7 @@ interface = gr.Interface(
30
  fn=generate_image,
31
  inputs=[
32
  gr.Textbox(label="Prompt"),
33
- gr.Image( type= "pil",label="Reference Image (Style)"),
34
  gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=0.6),
35
  ],
36
  outputs="image",
 
6
  import spaces
7
  from diffusers import StableDiffusion3ControlNetPipeline
8
  from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
9
+ from diffusers.utils import load_image
10
+
11
  # Log in to Hugging Face with your token
12
  token = os.getenv("HF_TOKEN")
13
  login(token=token)
14
 
15
  controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile")
16
  pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet)
17
+ pipe.to("cuda", torch.float16)
18
 
19
 
20
  @spaces.GPU
 
23
  # Generate the image with ControlNet conditioning
24
  generated_image = pipe(
25
  prompt=prompt,
26
+ control_image=load_image(reference_image),
27
  controlnet_conditioning_scale=controlnet_conditioning_scale,
28
  ).images[0]
29
  return generated_image
 
33
  fn=generate_image,
34
  inputs=[
35
  gr.Textbox(label="Prompt"),
36
+ gr.Image( type= "filepath",label="Reference Image (Style)"),
37
  gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=0.6),
38
  ],
39
  outputs="image",