import gradio as gr from huggingface_hub import login import os import spaces from diffusers import AutoPipelineForText2Image from diffusers.utils import load_image import torch import tempfile token = os.getenv("HF_TOKEN") login(token=token) pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda") pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") @spaces.GPU def generate_image(prompt, reference_image, controlnet_conditioning_scale): style_images = [load_image(f.name) for f in reference_image] pipeline.set_ip_adapter_scale(controlnet_conditioning_scale) image = pipeline( prompt=prompt, ip_adapter_image=[style_images], negative_prompt="", guidance_scale=5, num_inference_steps=30, ).images[0] return image # Set up Gradio interface interface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt"), # gr.Image( type= "filepath",label="Reference Image (Style)"), gr.File(file_count="multiple",label="Reference Image (Style)"), gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0), ], outputs="image", title="Image Generation with Stable Diffusion 3 medium and ControlNet", description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet." ) interface.launch()