# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union import cv2 import numpy as np import PIL.Image import torch from PIL import Image class ImageMixin: """ A mixin class for converting images between different formats: PIL, NumPy, and PyTorch tensors. This class provides methods to: - Convert a PIL image or a NumPy array to a PyTorch tensor. - Post-process a PyTorch tensor image and convert it to the specified return type. - Convert a PIL image or a list of PIL images to NumPy arrays. - Convert a NumPy image to a PyTorch tensor. - Convert a PyTorch tensor to a NumPy image. - Convert a NumPy image or a batch of images to a PIL image. """ def convert_image_to_tensor( self, image: Union[PIL.Image.Image, np.ndarray, List[PIL.Image.Image]], normalize: bool = True ) -> torch.Tensor: """ Convert a PIL image or a NumPy array to a PyTorch tensor. Args: image (Union[PIL.Image.Image, np.ndarray]): The input image, either as a PIL image, a NumPy array or a list of PIL images. Returns: torch.Tensor: The converted image as a PyTorch tensor. """ if isinstance(image, (PIL.Image.Image, list)): # We expect that if it is a list, it only should contain pillow images if isinstance(image, list): for single_image in image: if not isinstance(single_image, PIL.Image.Image): raise ValueError("All images in the list must be Pillow images.") image = self.pil_to_numpy(image, normalize) return self.numpy_to_pt(image) def post_process_image(self, image: torch.Tensor, return_type: str): """ Post-process a PyTorch tensor image and convert it to the specified return type. Args: image (torch.Tensor): The input image as a PyTorch tensor. return_type (str): The desired return type, either "pt" for PyTorch tensor, "np" for NumPy array, or "pil" for PIL image. Returns: Union[torch.Tensor, np.ndarray, List[PIL.Image.Image]]: The post-processed image in the specified return type. """ if return_type == "pt": return image image = self.pt_to_numpy(image) if return_type == "np": return image image = self.numpy_to_pil(image) return image @staticmethod def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image], normalize: bool = True) -> np.ndarray: """ Convert a PIL image or a list of PIL images to NumPy arrays. Args: images (Union[List[PIL.Image.Image], PIL.Image.Image]): The input image(s) as PIL image(s). Returns: np.ndarray: The converted image(s) as a NumPy array. """ if not isinstance(images, list): images = [images] if normalize: images = [np.array(image).astype(np.float32) / 255.0 for image in images] else: images = [np.array(image).astype(np.float32) for image in images] images = np.stack(images, axis=0) return images @staticmethod def numpy_to_pt(images: np.ndarray) -> torch.Tensor: """ Convert a NumPy image to a PyTorch tensor. Args: images (np.ndarray): The input image(s) as a NumPy array. Returns: torch.Tensor: The converted image(s) as a PyTorch tensor. """ if images.ndim == 3: images = images[..., None] images = torch.from_numpy(images.transpose(0, 3, 1, 2)).float() return images @staticmethod def pt_to_numpy(images: torch.Tensor) -> np.ndarray: """ Convert a PyTorch tensor to a NumPy image. Args: images (torch.Tensor): The input image(s) as a PyTorch tensor. Returns: np.ndarray: The converted image(s) as a NumPy array. """ images = images.cpu().permute(0, 2, 3, 1).float().numpy() return images @staticmethod def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: """ Convert a NumPy image or a batch of images to a PIL image. Args: images (np.ndarray): The input image(s) as a NumPy array. Returns: List[PIL.Image.Image]: The converted image(s) as PIL images. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image) for image in images] return pil_images @staticmethod def scale_image(image: torch.Tensor, scale: float, mutiple_factor: int = 8) -> torch.Tensor: """ Scales an image while maintaining aspect ratio and ensuring dimensions are multiples of `multiple_factor`. Args: image (`torch.Tensor`): The input image tensor of shape (batch, channels, height, width). scale (`float`): The scaling factor applied to the image dimensions. multiple_factor (`int`, *optional*, defaults to 8): The factor by which the new dimensions should be divisible. Returns: `torch.Tensor`: The scaled image tensor. """ if scale == 1.0: return image, scale _batch, _channels, height, width = image.shape # Calculate new dimensions while maintaining aspect ratio new_height = int(height * scale) new_width = int(width * scale) # Ensure new dimensions are multiples of mutiple_factor new_height = (new_height // mutiple_factor) * mutiple_factor new_width = (new_width // mutiple_factor) * mutiple_factor # if the final height and widht changed because of the multiple_factor, we need to set the scale too scale = new_height / height # Resize the image using the calculated dimensions resized_image = torch.nn.functional.interpolate( image, size=(new_height, new_width), mode="bilinear", align_corners=False ) return resized_image, scale @staticmethod def resize_numpy_image(image: np.ndarray, scale: float, multiple_factor: int = 8) -> np.ndarray: """ Resizes a NumPy image while maintaining aspect ratio and ensuring dimensions are multiples of `multiple_factor`. Args: image (`np.ndarray`): The input image array of shape (height, width, channels) or (height, width) for grayscale. scale (`float`): The scaling factor applied to the image dimensions. multiple_factor (`int`, *optional*, defaults to 8): The factor by which the new dimensions should be divisible. Returns: `np.ndarray`: The resized image array. """ if len(image.shape) == 3: # Single image without batch dimension image = np.expand_dims(image, axis=0) batch_size, height, width, channels = image.shape # Calculate new dimensions while maintaining aspect ratio new_height = int(height * scale) new_width = int(width * scale) # Ensure new dimensions are multiples of multiple_factor new_height = (new_height // multiple_factor) * multiple_factor new_width = (new_width // multiple_factor) * multiple_factor # if the final height and widht changed because of the multiple_factor, we need to set the scale too scale = new_height / height # Resize each image in the batch resized_images = [] for i in range(batch_size): resized_image = cv2.resize(image[i], (new_width, new_height), interpolation=cv2.INTER_LINEAR) resized_images.append(resized_image) # Stack resized images back into a single array resized_images = np.stack(resized_images, axis=0) return resized_images, scale