Martijn van Beers commited on
Commit
38e692a
·
1 Parent(s): a411e9c

Add slider to select layer

Browse files

For Integrated Gradients, this selects exactly that layer, but for
hila's method, this is the starting point. it ignores all lower layers,
and uses the selected layers and all the layers above.

Files changed (1) hide show
  1. app.py +12 -16
app.py CHANGED
@@ -76,14 +76,12 @@ def generate_relevance(model, input_ids, attention_mask, index=None, start_layer
76
  .to(torch.float)
77
  .requires_grad_(True)
78
  ).to(device)
79
- print("ONE_HOT", one_hot.size(), one_hot)
80
  one_hot = torch.sum(one_hot * output)
81
  model.zero_grad()
82
  # create the gradients for the class we're interested in
83
  one_hot.backward(retain_graph=True)
84
 
85
  num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
86
- print(input_ids.size(-1), num_tokens)
87
  R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
88
 
89
  for i, blk in enumerate(model.roberta.encoder.layer):
@@ -158,7 +156,6 @@ def show_explanation(model, input_ids, attention_mask, index=None, start_layer=8
158
  output, expl = generate_relevance(
159
  model, input_ids, attention_mask, index=index, start_layer=start_layer
160
  )
161
- #print(output.shape, expl.shape)
162
  # normalize scores
163
  scaler = PyTMinMaxScalerVectorized()
164
 
@@ -180,7 +177,6 @@ def show_explanation(model, input_ids, attention_mask, index=None, start_layer=8
180
  1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
181
  ]
182
  # vis_data_records.append(list(zip(tokens, nrm.tolist())))
183
- #print([(tokens[i], nrm[i].item()) for i in range(len(tokens))])
184
  vis_data_records.append(
185
  visualization.VisualizationDataRecord(
186
  nrm,
@@ -194,13 +190,10 @@ def show_explanation(model, input_ids, attention_mask, index=None, start_layer=8
194
  )
195
  )
196
  return visualize_text(vis_data_records)
197
- # return vis_data_records
198
 
199
  def custom_forward(inputs, attention_mask=None, pos=0):
200
- # print("inputs", inputs.shape)
201
  result = model2(inputs, attention_mask=attention_mask, return_dict=True)
202
  preds = result.logits
203
- # print("preds", preds.shape)
204
  return preds
205
 
206
  def summarize_attributions(attributions):
@@ -228,8 +221,6 @@ def run_attribution_model(input_ids, attention_mask, ref_token_id=tokenizer.unk_
228
  finally:
229
  pass
230
  vis_data_records = []
231
- print("IN", input_ids.size())
232
- print("ATTR", attributions.shape)
233
  for record in range(input_ids.size(0)):
234
  classification = output[record].argmax(dim=-1).item()
235
  class_name = classifications[classification]
@@ -237,7 +228,6 @@ def run_attribution_model(input_ids, attention_mask, ref_token_id=tokenizer.unk_
237
  tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
238
  1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
239
  ]
240
- print("TOK", len(tokens), attr.shape)
241
  vis_data_records.append(
242
  visualization.VisualizationDataRecord(
243
  attr,
@@ -252,16 +242,21 @@ def run_attribution_model(input_ids, attention_mask, ref_token_id=tokenizer.unk_
252
  )
253
  return visualize_text(vis_data_records)
254
 
255
- def sentence_sentiment(input_text):
256
  text_batch = [input_text]
257
  encoding = tokenizer(text_batch, return_tensors="pt")
258
  input_ids = encoding["input_ids"].to(device)
259
  attention_mask = encoding["attention_mask"].to(device)
260
- layer = getattr(model2.roberta.encoder.layer, "8")
 
 
 
 
 
261
  output = run_attribution_model(input_ids, attention_mask, layer=layer)
262
  return output
263
 
264
- def sentiment_explanation_hila(input_text):
265
  text_batch = [input_text]
266
  encoding = tokenizer(text_batch, return_tensors="pt")
267
  input_ids = encoding["input_ids"].to(device)
@@ -270,16 +265,17 @@ def sentiment_explanation_hila(input_text):
270
  # true class is positive - 1
271
  true_class = 1
272
 
273
- return show_explanation(model, input_ids, attention_mask)
274
 
 
275
  hila = gradio.Interface(
276
  fn=sentiment_explanation_hila,
277
- inputs="text",
278
  outputs="html",
279
  )
280
  lig = gradio.Interface(
281
  fn=sentence_sentiment,
282
- inputs="text",
283
  outputs="html",
284
  )
285
 
 
76
  .to(torch.float)
77
  .requires_grad_(True)
78
  ).to(device)
 
79
  one_hot = torch.sum(one_hot * output)
80
  model.zero_grad()
81
  # create the gradients for the class we're interested in
82
  one_hot.backward(retain_graph=True)
83
 
84
  num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
 
85
  R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
86
 
87
  for i, blk in enumerate(model.roberta.encoder.layer):
 
156
  output, expl = generate_relevance(
157
  model, input_ids, attention_mask, index=index, start_layer=start_layer
158
  )
 
159
  # normalize scores
160
  scaler = PyTMinMaxScalerVectorized()
161
 
 
177
  1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
178
  ]
179
  # vis_data_records.append(list(zip(tokens, nrm.tolist())))
 
180
  vis_data_records.append(
181
  visualization.VisualizationDataRecord(
182
  nrm,
 
190
  )
191
  )
192
  return visualize_text(vis_data_records)
 
193
 
194
  def custom_forward(inputs, attention_mask=None, pos=0):
 
195
  result = model2(inputs, attention_mask=attention_mask, return_dict=True)
196
  preds = result.logits
 
197
  return preds
198
 
199
  def summarize_attributions(attributions):
 
221
  finally:
222
  pass
223
  vis_data_records = []
 
 
224
  for record in range(input_ids.size(0)):
225
  classification = output[record].argmax(dim=-1).item()
226
  class_name = classifications[classification]
 
228
  tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
229
  1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
230
  ]
 
231
  vis_data_records.append(
232
  visualization.VisualizationDataRecord(
233
  attr,
 
242
  )
243
  return visualize_text(vis_data_records)
244
 
245
+ def sentence_sentiment(input_text, layer):
246
  text_batch = [input_text]
247
  encoding = tokenizer(text_batch, return_tensors="pt")
248
  input_ids = encoding["input_ids"].to(device)
249
  attention_mask = encoding["attention_mask"].to(device)
250
+ layer = int(layer)
251
+ if layer == 0:
252
+ layer = model2.roberta.embeddings
253
+ else:
254
+ layer = getattr(model2.roberta.encoder.layer, str(layer-1))
255
+
256
  output = run_attribution_model(input_ids, attention_mask, layer=layer)
257
  return output
258
 
259
+ def sentiment_explanation_hila(input_text, layer):
260
  text_batch = [input_text]
261
  encoding = tokenizer(text_batch, return_tensors="pt")
262
  input_ids = encoding["input_ids"].to(device)
 
265
  # true class is positive - 1
266
  true_class = 1
267
 
268
+ return show_explanation(model, input_ids, attention_mask, start_layer=int(layer))
269
 
270
+ layer_slider = gradio.Slider(minimum=0, maximum=12, value=8, step=1, label="Select layer")
271
  hila = gradio.Interface(
272
  fn=sentiment_explanation_hila,
273
+ inputs=["text", layer_slider],
274
  outputs="html",
275
  )
276
  lig = gradio.Interface(
277
  fn=sentence_sentiment,
278
+ inputs=["text", layer_slider],
279
  outputs="html",
280
  )
281