Martijn van Beers
commited on
Commit
·
4f67e27
1
Parent(s):
66d5973
Add 'classic' rollout
Browse files- app.py +57 -19
- lib/ExplanationGenerator.py +10 -7
- lib/gradient_rollout.py +7 -53
- lib/integrated_gradients.py +6 -4
- lib/rollout.py +67 -0
app.py
CHANGED
@@ -8,27 +8,30 @@ sys.path.append("lib")
|
|
8 |
import torch
|
9 |
|
10 |
from roberta2 import RobertaForSequenceClassification
|
|
|
|
|
11 |
from gradient_rollout import GradientRolloutExplainer
|
|
|
12 |
from integrated_gradients import IntegratedGradientsExplainer
|
13 |
-
from transformers import AutoModelForSequenceClassification
|
14 |
-
from transformers import AutoTokenizer
|
15 |
-
from captum.attr import LayerIntegratedGradients
|
16 |
-
from captum.attr import visualization
|
17 |
-
import util
|
18 |
-
import torch
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
def run(sent, rollout, ig, ig_baseline):
|
24 |
-
a = gr_explainer(sent,
|
25 |
-
b =
|
26 |
-
|
|
|
27 |
|
28 |
examples = pandas.read_csv("examples.csv").to_numpy().tolist()
|
29 |
|
30 |
with gradio.Blocks(title="Explanations with attention rollout") as iface:
|
31 |
-
|
32 |
with gradio.Row(equal_height=True):
|
33 |
with gradio.Column(scale=4):
|
34 |
sent = gradio.Textbox(label="Input sentence")
|
@@ -36,19 +39,54 @@ with gradio.Blocks(title="Explanations with attention rollout") as iface:
|
|
36 |
but = gradio.Button("Submit")
|
37 |
with gradio.Row(equal_height=True):
|
38 |
with gradio.Column():
|
39 |
-
rollout_layer = gradio.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
rollout_result = gradio.HTML()
|
41 |
with gradio.Column():
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
ig_result = gradio.HTML()
|
45 |
gradio.Examples(examples, [sent])
|
46 |
with gradio.Accordion("Some more details"):
|
47 |
-
|
48 |
|
49 |
-
|
|
|
50 |
ig_layer.change(ig_explainer, [sent, ig_layer, ig_baseline], ig_result)
|
51 |
-
but.click(run,
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
iface.launch()
|
|
|
8 |
import torch
|
9 |
|
10 |
from roberta2 import RobertaForSequenceClassification
|
11 |
+
from transformers import AutoTokenizer
|
12 |
+
|
13 |
from gradient_rollout import GradientRolloutExplainer
|
14 |
+
from rollout import RolloutExplainer
|
15 |
from integrated_gradients import IntegratedGradientsExplainer
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
18 |
+
model = RobertaForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2").to(device)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
|
20 |
+
|
21 |
+
ig_explainer = IntegratedGradientsExplainer(model, tokenizer)
|
22 |
+
gr_explainer = GradientRolloutExplainer(model, tokenizer)
|
23 |
+
ro_explainer = RolloutExplainer(model, tokenizer)
|
24 |
|
25 |
+
def run(sent, gradient, rollout, ig, ig_baseline):
|
26 |
+
a = gr_explainer(sent, gradient)
|
27 |
+
b = ro_explainer(sent, rollout)
|
28 |
+
c = ig_explainer(sent, ig, ig_baseline)
|
29 |
+
return a, b, c
|
30 |
|
31 |
examples = pandas.read_csv("examples.csv").to_numpy().tolist()
|
32 |
|
33 |
with gradio.Blocks(title="Explanations with attention rollout") as iface:
|
34 |
+
gradio.Markdown(pathlib.Path("description.md").read_text)
|
35 |
with gradio.Row(equal_height=True):
|
36 |
with gradio.Column(scale=4):
|
37 |
sent = gradio.Textbox(label="Input sentence")
|
|
|
39 |
but = gradio.Button("Submit")
|
40 |
with gradio.Row(equal_height=True):
|
41 |
with gradio.Column():
|
42 |
+
rollout_layer = gradio.Slider(
|
43 |
+
minimum=1,
|
44 |
+
maximum=12,
|
45 |
+
value=1,
|
46 |
+
step=1,
|
47 |
+
label="Select rollout start layer"
|
48 |
+
)
|
49 |
+
with gradio.Column():
|
50 |
+
gradient_layer = gradio.Slider(
|
51 |
+
minimum=1,
|
52 |
+
maximum=12,
|
53 |
+
value=8,
|
54 |
+
step=1,
|
55 |
+
label="Select gradient rollout start layer"
|
56 |
+
)
|
57 |
+
with gradio.Column():
|
58 |
+
ig_layer = gradio.Slider(
|
59 |
+
minimum=0,
|
60 |
+
maximum=12,
|
61 |
+
value=0,
|
62 |
+
step=1,
|
63 |
+
label="Select IG layer"
|
64 |
+
)
|
65 |
+
ig_baseline = gradio.Dropdown(
|
66 |
+
label="Baseline token",
|
67 |
+
choices=['Unknown', 'Padding'], value="Unknown"
|
68 |
+
)
|
69 |
+
with gradio.Row(equal_height=True):
|
70 |
+
with gradio.Column():
|
71 |
+
gradio.Markdown("### Attention Rollout")
|
72 |
rollout_result = gradio.HTML()
|
73 |
with gradio.Column():
|
74 |
+
gradio.Markdown("### Gradient-weighted Attention Rollout")
|
75 |
+
gradient_result = gradio.HTML()
|
76 |
+
with gradio.Column():
|
77 |
+
gradio.Markdown("### Layer-Integrated Gradients")
|
78 |
ig_result = gradio.HTML()
|
79 |
gradio.Examples(examples, [sent])
|
80 |
with gradio.Accordion("Some more details"):
|
81 |
+
gradio.Markdown(pathlib.Path("notice.md").read_text)
|
82 |
|
83 |
+
gradient_layer.change(gr_explainer, [sent, gradient_layer], gradient_result)
|
84 |
+
rollout_layer.change(ro_explainer, [sent, rollout_layer], rollout_result)
|
85 |
ig_layer.change(ig_explainer, [sent, ig_layer, ig_baseline], ig_result)
|
86 |
+
but.click(run,
|
87 |
+
inputs=[sent, gradient_layer, rollout_layer, ig_layer, ig_baseline],
|
88 |
+
outputs=[gradient_result, rollout_result, ig_result]
|
89 |
+
)
|
90 |
|
91 |
|
92 |
iface.launch()
|
lib/ExplanationGenerator.py
CHANGED
@@ -25,8 +25,8 @@ class Generator:
|
|
25 |
self.key = key
|
26 |
self.model.eval()
|
27 |
|
28 |
-
def
|
29 |
-
return self.
|
30 |
|
31 |
def _calculate_gradients(self, output, index, do_relprop=True):
|
32 |
if index == None:
|
@@ -72,7 +72,6 @@ class Generator:
|
|
72 |
rollout[:, 0, 0] = rollout[:, 0].min()
|
73 |
return rollout[:, 0]
|
74 |
|
75 |
-
|
76 |
def generate_LRP_last_layer(self, input_ids, attention_mask,
|
77 |
index=None):
|
78 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
@@ -117,7 +116,7 @@ class Generator:
|
|
117 |
all_layer_attentions.append(avg_heads)
|
118 |
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
119 |
rollout[:, 0, 0] = 0
|
120 |
-
return rollout[:, 0]
|
121 |
|
122 |
def generate_attn_gradcam(self, input_ids, attention_mask, index=None):
|
123 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
@@ -148,12 +147,14 @@ class Generator:
|
|
148 |
return torch.matmul(cam_ss, R_ss)
|
149 |
|
150 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
151 |
-
|
|
|
152 |
|
153 |
num_tokens = input_ids.size(-1)
|
154 |
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(output.device)
|
155 |
|
156 |
-
|
|
|
157 |
if i < start_layer:
|
158 |
continue
|
159 |
grad = blk.attention.self.get_attn_gradients().detach()
|
@@ -161,5 +162,7 @@ class Generator:
|
|
161 |
cam = avg_heads(cam, grad)
|
162 |
joint = apply_self_attention_rules(R, cam)
|
163 |
R += joint
|
164 |
-
|
|
|
|
|
165 |
|
|
|
25 |
self.key = key
|
26 |
self.model.eval()
|
27 |
|
28 |
+
def tokens_from_ids(self, ids):
|
29 |
+
return list(map(lambda s: s[1:] if s[0] == "Ġ" else s, self.tokenizer.convert_ids_to_tokens(ids)))
|
30 |
|
31 |
def _calculate_gradients(self, output, index, do_relprop=True):
|
32 |
if index == None:
|
|
|
72 |
rollout[:, 0, 0] = rollout[:, 0].min()
|
73 |
return rollout[:, 0]
|
74 |
|
|
|
75 |
def generate_LRP_last_layer(self, input_ids, attention_mask,
|
76 |
index=None):
|
77 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
|
|
116 |
all_layer_attentions.append(avg_heads)
|
117 |
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
118 |
rollout[:, 0, 0] = 0
|
119 |
+
return output, rollout[:, 0]
|
120 |
|
121 |
def generate_attn_gradcam(self, input_ids, attention_mask, index=None):
|
122 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
|
|
147 |
return torch.matmul(cam_ss, R_ss)
|
148 |
|
149 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
150 |
+
|
151 |
+
self._calculate_gradients(output, index, do_relprop=False)
|
152 |
|
153 |
num_tokens = input_ids.size(-1)
|
154 |
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(output.device)
|
155 |
|
156 |
+
blocks = _get_module_from_name(self.model, self.key)
|
157 |
+
for i, blk in enumerate(blocks):
|
158 |
if i < start_layer:
|
159 |
continue
|
160 |
grad = blk.attention.self.get_attn_gradients().detach()
|
|
|
162 |
cam = avg_heads(cam, grad)
|
163 |
joint = apply_self_attention_rules(R, cam)
|
164 |
R += joint
|
165 |
+
# 0 because we look at the influence *on* the CLS token
|
166 |
+
# 1:-1 because we don't want the influence *from* the CLS/SEP tokens
|
167 |
+
return output, R[:, 0, 1:-1]
|
168 |
|
lib/gradient_rollout.py
CHANGED
@@ -4,68 +4,22 @@ from captum.attr import visualization
|
|
4 |
|
5 |
from roberta2 import RobertaForSequenceClassification
|
6 |
from util import visualize_text, PyTMinMaxScalerVectorized
|
|
|
7 |
|
8 |
classifications = ["NEGATIVE", "POSITIVE"]
|
9 |
|
10 |
-
class GradientRolloutExplainer:
|
11 |
-
def __init__(self):
|
12 |
-
|
13 |
-
self.
|
14 |
-
self.
|
15 |
-
self.tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
|
16 |
-
|
17 |
-
def tokens_from_ids(self, ids):
|
18 |
-
return list(map(lambda s: s[1:] if s[0] == "Ġ" else s, self.tokenizer.convert_ids_to_tokens(ids)))
|
19 |
-
|
20 |
-
def run_attribution_model(self, input_ids, attention_mask, index=None, start_layer=0):
|
21 |
-
def avg_heads(cam, grad):
|
22 |
-
cam = (grad * cam).clamp(min=0).mean(dim=-3)
|
23 |
-
# set negative values to 0, then average
|
24 |
-
# cam = cam.clamp(min=0).mean(dim=0)
|
25 |
-
return cam
|
26 |
-
|
27 |
-
def apply_self_attention_rules(R_ss, cam_ss):
|
28 |
-
R_ss_addition = torch.matmul(cam_ss, R_ss)
|
29 |
-
return R_ss_addition
|
30 |
-
|
31 |
-
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
32 |
-
if index == None:
|
33 |
-
# index = np.expand_dims(np.arange(input_ids.shape[1])
|
34 |
-
# by default explain the class with the highest score
|
35 |
-
index = output.argmax(axis=-1).detach().cpu().numpy()
|
36 |
-
|
37 |
-
# create a one-hot vector selecting class we want explanations for
|
38 |
-
one_hot = (
|
39 |
-
torch.nn.functional.one_hot(
|
40 |
-
torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
|
41 |
-
)
|
42 |
-
.to(torch.float)
|
43 |
-
.requires_grad_(True)
|
44 |
-
).to(self.device)
|
45 |
-
one_hot = torch.sum(one_hot * output)
|
46 |
-
self.model.zero_grad()
|
47 |
-
# create the gradients for the class we're interested in
|
48 |
-
one_hot.backward(retain_graph=True)
|
49 |
-
|
50 |
-
num_tokens = self.model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
|
51 |
-
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(self.device)
|
52 |
-
|
53 |
-
for i, blk in enumerate(self.model.roberta.encoder.layer):
|
54 |
-
if i < start_layer:
|
55 |
-
continue
|
56 |
-
grad = blk.attention.self.get_attn_gradients()
|
57 |
-
cam = blk.attention.self.get_attn()
|
58 |
-
cam = avg_heads(cam, grad)
|
59 |
-
joint = apply_self_attention_rules(R, cam)
|
60 |
-
R += joint
|
61 |
-
return output, R[:, 0, 1:-1]
|
62 |
|
63 |
def build_visualization(self, input_ids, attention_mask, index=None, start_layer=8):
|
64 |
# generate an explanation for the input
|
65 |
vis_data_records = []
|
66 |
|
67 |
for index in range(2):
|
68 |
-
output, expl = self.
|
69 |
input_ids, attention_mask, index=index, start_layer=start_layer
|
70 |
)
|
71 |
# normalize scores
|
|
|
4 |
|
5 |
from roberta2 import RobertaForSequenceClassification
|
6 |
from util import visualize_text, PyTMinMaxScalerVectorized
|
7 |
+
from ExplanationGenerator import Generator
|
8 |
|
9 |
classifications = ["NEGATIVE", "POSITIVE"]
|
10 |
|
11 |
+
class GradientRolloutExplainer(Generator):
|
12 |
+
def __init__(self, model, tokenizer):
|
13 |
+
super().__init__(model, key="roberta.encoder.layer")
|
14 |
+
self.device = model.device
|
15 |
+
self.tokenizer = tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def build_visualization(self, input_ids, attention_mask, index=None, start_layer=8):
|
18 |
# generate an explanation for the input
|
19 |
vis_data_records = []
|
20 |
|
21 |
for index in range(2):
|
22 |
+
output, expl = self.generate_rollout_attn_gradcam(
|
23 |
input_ids, attention_mask, index=index, start_layer=start_layer
|
24 |
)
|
25 |
# normalize scores
|
lib/integrated_gradients.py
CHANGED
@@ -6,15 +6,17 @@ from transformers import AutoTokenizer
|
|
6 |
from captum.attr import LayerIntegratedGradients
|
7 |
from captum.attr import visualization
|
8 |
|
|
|
|
|
9 |
from util import visualize_text
|
10 |
|
11 |
classifications = ["NEGATIVE", "POSITIVE"]
|
12 |
|
13 |
class IntegratedGradientsExplainer:
|
14 |
-
def __init__(self):
|
15 |
-
self.
|
16 |
-
self.
|
17 |
-
self.tokenizer =
|
18 |
self.baseline_map = {
|
19 |
'Unknown': self.tokenizer.unk_token_id,
|
20 |
'Padding': self.tokenizer.pad_token_id,
|
|
|
6 |
from captum.attr import LayerIntegratedGradients
|
7 |
from captum.attr import visualization
|
8 |
|
9 |
+
from roberta2 import RobertaForSequenceClassification
|
10 |
+
from ExplanationGenerator import Generator
|
11 |
from util import visualize_text
|
12 |
|
13 |
classifications = ["NEGATIVE", "POSITIVE"]
|
14 |
|
15 |
class IntegratedGradientsExplainer:
|
16 |
+
def __init__(self, model, tokenizer):
|
17 |
+
self.model = model
|
18 |
+
self.device = model.device
|
19 |
+
self.tokenizer = tokenizer
|
20 |
self.baseline_map = {
|
21 |
'Unknown': self.tokenizer.unk_token_id,
|
22 |
'Padding': self.tokenizer.pad_token_id,
|
lib/rollout.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from captum.attr import visualization
|
4 |
+
|
5 |
+
from roberta2 import RobertaForSequenceClassification
|
6 |
+
from ExplanationGenerator import Generator
|
7 |
+
from util import visualize_text, PyTMinMaxScalerVectorized
|
8 |
+
|
9 |
+
classifications = ["NEGATIVE", "POSITIVE"]
|
10 |
+
|
11 |
+
class RolloutExplainer(Generator):
|
12 |
+
def __init__(self, model, tokenizer):
|
13 |
+
super().__init__(model, key="roberta.encoder.layer")
|
14 |
+
self.device = model.device
|
15 |
+
self.tokenizer = tokenizer
|
16 |
+
|
17 |
+
def build_visualization(self, input_ids, attention_mask, start_layer=8):
|
18 |
+
# generate an explanation for the input
|
19 |
+
vis_data_records = []
|
20 |
+
|
21 |
+
output, expl = self.generate_rollout(
|
22 |
+
input_ids, attention_mask, start_layer=start_layer
|
23 |
+
)
|
24 |
+
# normalize scores
|
25 |
+
scaler = PyTMinMaxScalerVectorized()
|
26 |
+
|
27 |
+
norm = scaler(expl)
|
28 |
+
# get the model classification
|
29 |
+
output = torch.nn.functional.softmax(output, dim=-1)
|
30 |
+
|
31 |
+
for record in range(input_ids.size(0)):
|
32 |
+
classification = output[record].argmax(dim=-1).item()
|
33 |
+
class_name = classifications[classification]
|
34 |
+
nrm = norm[record]
|
35 |
+
|
36 |
+
# if the classification is negative, higher explanation scores are more negative
|
37 |
+
# flip for visualization
|
38 |
+
if class_name == "NEGATIVE":
|
39 |
+
nrm *= -1
|
40 |
+
tokens = self.tokens_from_ids(input_ids[record].flatten())[
|
41 |
+
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
|
42 |
+
]
|
43 |
+
vis_data_records.append(
|
44 |
+
visualization.VisualizationDataRecord(
|
45 |
+
nrm,
|
46 |
+
output[record][classification],
|
47 |
+
classification,
|
48 |
+
classification,
|
49 |
+
classification,
|
50 |
+
1,
|
51 |
+
tokens,
|
52 |
+
1,
|
53 |
+
)
|
54 |
+
)
|
55 |
+
return visualize_text(vis_data_records)
|
56 |
+
|
57 |
+
def __call__(self, input_text, start_layer=8):
|
58 |
+
if start_layer > 0:
|
59 |
+
start_layer -= 1
|
60 |
+
|
61 |
+
text_batch = [input_text]
|
62 |
+
encoding = self.tokenizer(text_batch, return_tensors="pt")
|
63 |
+
input_ids = encoding["input_ids"].to(self.device)
|
64 |
+
attention_mask = encoding["attention_mask"].to(self.device)
|
65 |
+
|
66 |
+
return self.build_visualization(input_ids, attention_mask, start_layer=int(start_layer))
|
67 |
+
|