Martijn van Beers
commited on
Commit
·
9e7d7f8
1
Parent(s):
5b3ff3f
Add title and description
Browse files
app.py
CHANGED
@@ -9,9 +9,7 @@ from BERT_explainability.ExplanationGenerator import Generator
|
|
9 |
from BERT_explainability.roberta2 import RobertaForSequenceClassification
|
10 |
from transformers import AutoTokenizer
|
11 |
|
12 |
-
from captum.attr import
|
13 |
-
visualization
|
14 |
-
)
|
15 |
import torch
|
16 |
|
17 |
# from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
|
@@ -19,11 +17,15 @@ class PyTMinMaxScalerVectorized(object):
|
|
19 |
"""
|
20 |
Transforms each channel to the range [0, 1].
|
21 |
"""
|
|
|
22 |
def __init__(self, dimension=-1):
|
23 |
self.d = dimension
|
|
|
24 |
def __call__(self, tensor):
|
25 |
d = self.d
|
26 |
-
scale = 1.0 / (
|
|
|
|
|
27 |
tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
|
28 |
return tensor
|
29 |
|
@@ -33,7 +35,9 @@ if torch.cuda.is_available():
|
|
33 |
else:
|
34 |
device = torch.device("cpu")
|
35 |
|
36 |
-
model = RobertaForSequenceClassification.from_pretrained(
|
|
|
|
|
37 |
model.eval()
|
38 |
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
|
39 |
# initialize the explanations generator
|
@@ -43,33 +47,33 @@ classifications = ["NEGATIVE", "POSITIVE"]
|
|
43 |
|
44 |
# rule 5 from paper
|
45 |
def avg_heads(cam, grad):
|
46 |
-
cam = (
|
47 |
-
(grad * cam)
|
48 |
-
.clamp(min=0)
|
49 |
-
.mean(dim=-3)
|
50 |
-
)
|
51 |
# set negative values to 0, then average
|
52 |
-
# cam = cam.clamp(min=0).mean(dim=0)
|
53 |
return cam
|
54 |
|
|
|
55 |
# rule 6 from paper
|
56 |
def apply_self_attention_rules(R_ss, cam_ss):
|
57 |
R_ss_addition = torch.matmul(cam_ss, R_ss)
|
58 |
return R_ss_addition
|
59 |
|
|
|
60 |
def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
|
61 |
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
62 |
if index == None:
|
63 |
-
#index = np.expand_dims(np.arange(input_ids.shape[1])
|
64 |
# by default explain the class with the highest score
|
65 |
index = output.argmax(axis=-1).detach().cpu().numpy()
|
66 |
|
67 |
# create a one-hot vector selecting class we want explanations for
|
68 |
-
one_hot = (
|
69 |
-
|
70 |
-
.
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
print("ONE_HOT", one_hot.size(), one_hot)
|
74 |
one_hot = torch.sum(one_hot * output)
|
75 |
model.zero_grad()
|
@@ -90,6 +94,7 @@ def generate_relevance(model, input_ids, attention_mask, index=None, start_layer
|
|
90 |
R += joint
|
91 |
return output, R[:, 0, 1:-1]
|
92 |
|
|
|
93 |
def visualize_text(datarecords, legend=True):
|
94 |
dom = ["<table width: 100%>"]
|
95 |
rows = [
|
@@ -111,7 +116,9 @@ def visualize_text(datarecords, legend=True):
|
|
111 |
)
|
112 |
),
|
113 |
visualization.format_classname(datarecord.attr_class),
|
114 |
-
visualization.format_classname(
|
|
|
|
|
115 |
visualization.format_word_importances(
|
116 |
datarecord.raw_input_ids, datarecord.word_attributions
|
117 |
),
|
@@ -143,9 +150,12 @@ def visualize_text(datarecords, legend=True):
|
|
143 |
|
144 |
return html
|
145 |
|
|
|
146 |
def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0):
|
147 |
# generate an explanation for the input
|
148 |
-
output, expl = generate_relevance(
|
|
|
|
|
149 |
print(output.shape, expl.shape)
|
150 |
# normalize scores
|
151 |
scaler = PyTMinMaxScalerVectorized()
|
@@ -154,7 +164,6 @@ def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0
|
|
154 |
# get the model classification
|
155 |
output = torch.nn.functional.softmax(output, dim=-1)
|
156 |
|
157 |
-
|
158 |
vis_data_records = []
|
159 |
for record in range(input_ids.size(0)):
|
160 |
classification = output[record].argmax(dim=-1).item()
|
@@ -164,25 +173,31 @@ def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0
|
|
164 |
# if the classification is negative, higher explanation scores are more negative
|
165 |
# flip for visualization
|
166 |
if class_name == "NEGATIVE":
|
167 |
-
nrm *=
|
168 |
-
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
|
|
|
|
|
169 |
print([(tokens[i], nrm[i].item()) for i in range(len(tokens))])
|
170 |
-
vis_data_records.append(
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
179 |
return visualize_text(vis_data_records)
|
180 |
|
|
|
181 |
def run(input_text):
|
182 |
text_batch = [input_text]
|
183 |
-
encoding = tokenizer(text_batch, return_tensors=
|
184 |
-
input_ids = encoding[
|
185 |
-
attention_mask = encoding[
|
186 |
|
187 |
# true class is positive - 1
|
188 |
true_class = 1
|
@@ -190,5 +205,20 @@ def run(input_text):
|
|
190 |
html = show_explanation(model, input_ids, attention_mask)
|
191 |
return html
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
iface.launch()
|
|
|
9 |
from BERT_explainability.roberta2 import RobertaForSequenceClassification
|
10 |
from transformers import AutoTokenizer
|
11 |
|
12 |
+
from captum.attr import visualization
|
|
|
|
|
13 |
import torch
|
14 |
|
15 |
# from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
|
|
|
17 |
"""
|
18 |
Transforms each channel to the range [0, 1].
|
19 |
"""
|
20 |
+
|
21 |
def __init__(self, dimension=-1):
|
22 |
self.d = dimension
|
23 |
+
|
24 |
def __call__(self, tensor):
|
25 |
d = self.d
|
26 |
+
scale = 1.0 / (
|
27 |
+
tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0]
|
28 |
+
)
|
29 |
tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
|
30 |
return tensor
|
31 |
|
|
|
35 |
else:
|
36 |
device = torch.device("cpu")
|
37 |
|
38 |
+
model = RobertaForSequenceClassification.from_pretrained(
|
39 |
+
"textattack/roberta-base-SST-2"
|
40 |
+
).to(device)
|
41 |
model.eval()
|
42 |
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
|
43 |
# initialize the explanations generator
|
|
|
47 |
|
48 |
# rule 5 from paper
|
49 |
def avg_heads(cam, grad):
|
50 |
+
cam = (grad * cam).clamp(min=0).mean(dim=-3)
|
|
|
|
|
|
|
|
|
51 |
# set negative values to 0, then average
|
52 |
+
# cam = cam.clamp(min=0).mean(dim=0)
|
53 |
return cam
|
54 |
|
55 |
+
|
56 |
# rule 6 from paper
|
57 |
def apply_self_attention_rules(R_ss, cam_ss):
|
58 |
R_ss_addition = torch.matmul(cam_ss, R_ss)
|
59 |
return R_ss_addition
|
60 |
|
61 |
+
|
62 |
def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
|
63 |
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
64 |
if index == None:
|
65 |
+
# index = np.expand_dims(np.arange(input_ids.shape[1])
|
66 |
# by default explain the class with the highest score
|
67 |
index = output.argmax(axis=-1).detach().cpu().numpy()
|
68 |
|
69 |
# create a one-hot vector selecting class we want explanations for
|
70 |
+
one_hot = (
|
71 |
+
torch.nn.functional.one_hot(
|
72 |
+
torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
|
73 |
+
)
|
74 |
+
.to(torch.float)
|
75 |
+
.requires_grad_(True)
|
76 |
+
).to(device)
|
77 |
print("ONE_HOT", one_hot.size(), one_hot)
|
78 |
one_hot = torch.sum(one_hot * output)
|
79 |
model.zero_grad()
|
|
|
94 |
R += joint
|
95 |
return output, R[:, 0, 1:-1]
|
96 |
|
97 |
+
|
98 |
def visualize_text(datarecords, legend=True):
|
99 |
dom = ["<table width: 100%>"]
|
100 |
rows = [
|
|
|
116 |
)
|
117 |
),
|
118 |
visualization.format_classname(datarecord.attr_class),
|
119 |
+
visualization.format_classname(
|
120 |
+
"{0:.2f}".format(datarecord.attr_score)
|
121 |
+
),
|
122 |
visualization.format_word_importances(
|
123 |
datarecord.raw_input_ids, datarecord.word_attributions
|
124 |
),
|
|
|
150 |
|
151 |
return html
|
152 |
|
153 |
+
|
154 |
def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0):
|
155 |
# generate an explanation for the input
|
156 |
+
output, expl = generate_relevance(
|
157 |
+
model, input_ids, attention_mask, index=index, start_layer=start_layer
|
158 |
+
)
|
159 |
print(output.shape, expl.shape)
|
160 |
# normalize scores
|
161 |
scaler = PyTMinMaxScalerVectorized()
|
|
|
164 |
# get the model classification
|
165 |
output = torch.nn.functional.softmax(output, dim=-1)
|
166 |
|
|
|
167 |
vis_data_records = []
|
168 |
for record in range(input_ids.size(0)):
|
169 |
classification = output[record].argmax(dim=-1).item()
|
|
|
173 |
# if the classification is negative, higher explanation scores are more negative
|
174 |
# flip for visualization
|
175 |
if class_name == "NEGATIVE":
|
176 |
+
nrm *= -1
|
177 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
|
178 |
+
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
|
179 |
+
]
|
180 |
print([(tokens[i], nrm[i].item()) for i in range(len(tokens))])
|
181 |
+
vis_data_records.append(
|
182 |
+
visualization.VisualizationDataRecord(
|
183 |
+
nrm,
|
184 |
+
output[record][classification],
|
185 |
+
classification,
|
186 |
+
classification,
|
187 |
+
index,
|
188 |
+
1,
|
189 |
+
tokens,
|
190 |
+
1,
|
191 |
+
)
|
192 |
+
)
|
193 |
return visualize_text(vis_data_records)
|
194 |
|
195 |
+
|
196 |
def run(input_text):
|
197 |
text_batch = [input_text]
|
198 |
+
encoding = tokenizer(text_batch, return_tensors="pt")
|
199 |
+
input_ids = encoding["input_ids"].to(device)
|
200 |
+
attention_mask = encoding["attention_mask"].to(device)
|
201 |
|
202 |
# true class is positive - 1
|
203 |
true_class = 1
|
|
|
205 |
html = show_explanation(model, input_ids, attention_mask)
|
206 |
return html
|
207 |
|
208 |
+
|
209 |
+
iface = gradio.Interface(
|
210 |
+
fn=run,
|
211 |
+
inputs="text",
|
212 |
+
outputs="html",
|
213 |
+
title="RoBERTa Explanability",
|
214 |
+
description="Quick demo of a version of [Hila Chefer's](https://github.com/hila-chefer) [Transformer-Explanability](https://github.com/hila-chefer/Transformer-Explainability/) but without the layerwise relevance propagation (as in [Transformer-MM_explainability](https://github.com/hila-chefer/Transformer-MM-Explainability/)) for a RoBERTa model.",
|
215 |
+
examples=[
|
216 |
+
[
|
217 |
+
"This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great"
|
218 |
+
],
|
219 |
+
[
|
220 |
+
"I really didn't like this movie. Some of the actors were good, but overall the movie was boring"
|
221 |
+
],
|
222 |
+
],
|
223 |
+
)
|
224 |
iface.launch()
|