Spaces:
Sleeping
Sleeping
File size: 5,403 Bytes
f4a1b77 38c1d39 3b1a0aa 99b20e7 3b1a0aa f4a1b77 3b1a0aa f4a1b77 3b1a0aa 27717dd 2a965c2 f4a1b77 3b1a0aa 99b20e7 40d472f 99b20e7 40d472f 3b1a0aa 40d472f 3b1a0aa 40d472f 3b1a0aa 99b20e7 3b1a0aa 40d472f 3b1a0aa f4a1b77 55d104b 99b20e7 55d104b 99b20e7 8e10efe 55d104b cc68b4d 55d104b 99b20e7 55d104b 99b20e7 55d104b 99b20e7 16f795a 55d104b 8e10efe f4a1b77 3b1a0aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import torch
import datasets
import gradio
import pandas
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
class CrowSPairsDataset(object):
def __init__(self):
super().__init__()
self.df = (datasets
.load_dataset("BigScienceBiasEval/crows_pairs_multilingual")["test"]
.to_pandas()
.query('stereo_antistereo == "stereo"')
.drop(columns="stereo_antistereo")
)
def sample(self, bias_type, n=10):
return self.df[self.df["bias_type"] == bias_type].sample(n=n)
def bias_types(self):
return self.df.bias_type.unique().tolist()
def run(df):
result = "<table><tr style='color: white; background-color: #555'><th>index</th><th>more stereotypical</th><th>gpt-2</th><th>debiased</th><th>less stereotypical<th></tr>"
for i, row in df.iterrows():
result += f"<tr><td>{i}</td><td style='padding: 0 1em; background-image: linear-gradient(90deg, rgba(0,255,255,0.2) 0%, rgba(255,255,255,1) 100%)'>{row['sent_more']}</td>"
more = row["sent_more"]
more = tokenizer(more, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_more_gpt = model_gpt(more, labels=more.clone())
out_more_custom = model_custom(more, labels=more.clone())
score_more_gpt = out_more_gpt["loss"]
score_more_custom = out_more_custom["loss"]
perplexity_more_gpt = torch.exp(score_more_gpt).item()
perplexity_more_custom = torch.exp(score_more_custom).item()
less = row["sent_less"]
less = tokenizer(less, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_less_gpt = model_gpt(less, labels=less.clone())
out_less_custom = model_custom(less, labels=less.clone())
score_less_gpt = out_less_gpt["loss"]
score_less_custom = out_less_custom["loss"]
perplexity_less_gpt = torch.exp(score_less_gpt).item()
perplexity_less_custom = torch.exp(score_less_custom).item()
if perplexity_more_gpt > perplexity_less_gpt:
diff = round(
abs((perplexity_more_gpt - perplexity_less_gpt) / perplexity_more_gpt), 2
)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(0,255,255,{shade})'>{diff:.2f}</td>"
else:
diff = abs((perplexity_less_gpt - perplexity_more_gpt) / perplexity_less_gpt)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(255,0,255,{shade})'>{diff:.2f}</td>"
if perplexity_more_custom > perplexity_less_custom:
diff = round(
abs((perplexity_more_custom - perplexity_less_custom) / perplexity_more_custom), 2
)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(0,255,255,{shade})'>{diff:.2f}</td>"
else:
diff = abs((perplexity_less_custom - perplexity_more_custom) / perplexity_less_custom)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(255,0,255,{shade})'>{diff:.2f}</td>"
result += f"<td style='padding: 0 1em; background-image: linear-gradient(90deg, rgba(255,255,255,1) 0%, rgba(255,0,255,0.2) 100%)'>{row['sent_less']}</td></tr>"
result += "</table>"
return result
def sample_and_run(bias_type):
sample = dataset.sample(bias_type)
return run(sample)
def manual_run(more, less):
df = pandas.DataFrame.from_dict({
'sent_more': [more],
'sent_less': [less],
'bias_type': ["manual"],
})
return run(df)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_id = "gpt2"
model_gpt = GPT2LMHeadModel.from_pretrained(model_id).to(device)
model_custom = torch.load("./gpt2_attn_heads_dm_top10_seed_1.pt")
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
dataset = CrowSPairsDataset()
bias_type_sel = gradio.Dropdown(label="Bias Type", choices=dataset.bias_types())
with open("description.md") as fh:
desc = fh.read()
with open("descr-2.md") as fh:
desc2 = fh.read()
with open("notice.md") as fh:
notice = fh.read()
with open("results.md") as fh:
results = fh.read()
with gradio.Blocks(title="Detecting stereotypes in the GPT-2 language model using CrowS-Pairs") as iface:
gradio.Markdown(desc)
with gradio.Row(equal_height=True):
with gradio.Column(scale=4):
bias_sel = gradio.Dropdown(label="Bias Type", choices=dataset.bias_types())
with gradio.Column(scale=1):
but = gradio.Button("Sample")
gradio.Markdown(desc2)
with gradio.Row(equal_height=True):
with gradio.Column(scale=2):
more = gradio.Textbox(label="More stereotypical")
with gradio.Column(scale=2):
less = gradio.Textbox(label="Less stereotypical")
with gradio.Column(scale=1):
manual = gradio.Button("Run")
out = gradio.HTML()
but.click(sample_and_run, bias_sel, out)
manual.click(manual_run, [more, less], out)
with gradio.Accordion("Some more details"):
gradio.Markdown(notice)
with gradio.Accordion("Results for English and French BERT language models"):
gradio.Markdown(results)
iface.launch()
|