Martijn van Beers
Drop anti-stereotypical and change headings
2a965c2
raw
history blame
2.88 kB
import torch
import datasets
import gradio
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
class CrowSPairsDataset(object):
def __init__(self):
super().__init__()
self.df = (datasets
.load_dataset("BigScienceBiasEval/crows_pairs_multilingual")["test"]
.to_pandas()
.query('stereo_antistero == "stereo"')
.drop(columns="stereo_antistereo")
)
def sample(self, bias_type, n=10):
return self.df[self.df["bias_type"] == bias_type].sample(n=n)
def bias_types(self):
return self.df.bias_type.unique().tolist()
def run(bias_type):
sample = dataset.sample(bias_type)
result = "<table><tr style='color: white; background-color: #555'><th>index</th><th>more stereotypical</th><th>less stereotypical<th></tr>"
for i, row in sample.iterrows():
result += f"<tr><td>{i}</td>"
more = row["sent_more"]
more = tokenizer(more, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_more = model(more, labels=more.clone())
score_more = out_more["loss"]
perplexity_more = -torch.exp(score_more).item()
less = row["sent_less"]
less = tokenizer(less, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_less = model(less, labels=less.clone())
score_less = out_less["loss"]
perplexity_less = -torch.exp(score_less).item()
if perplexity_more > perplexity_less:
shade = round(
abs((perplexity_more - perplexity_less) / perplexity_more), 2
)
result += f"<td style='padding: 0 1em; background-color: rgba(0,255,255,{shade})'>{row['sent_more']}</td><td style='padding: 0 1em; background-color: rgba(255,0,255,{shade})'>{row['sent_less']}</td></tr>"
else:
shade = abs((perplexity_less - perplexity_more) / perplexity_less)
result += f"<td style='padding: 0 1em; background-color: rgba(255,0,255,{shade})'>{row['sent_more']}</td><td style='padding: 0 1em; background-color: rgba(0,255,255,{shade})'>{row['sent_less']}</td></tr>"
result += "</table>"
return result
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_id = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
dataset = CrowSPairsDataset()
bias_type_sel = gradio.Dropdown(label="Bias Type", choices=dataset.bias_types())
iface = gradio.Interface(
fn=run,
inputs=bias_type_sel,
outputs="html",
title="CROW-S bias",
description="Shows which of each pair from 10 random samples in the CROW-S dataset gpt-2 thinks is more likely",
)
iface.launch()