Martijn van Beers
Update to use the debiased model
315cc6b
raw
history blame
5.43 kB
import torch
import datasets
import gradio
import pandas
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
class CrowSPairsDataset(object):
def __init__(self):
super().__init__()
self.df = (datasets
.load_dataset("BigScienceBiasEval/crows_pairs_multilingual")["test"]
.to_pandas()
.query('stereo_antistereo == "stereo"')
.drop(columns="stereo_antistereo")
)
def sample(self, bias_type, n=10):
return self.df[self.df["bias_type"] == bias_type].sample(n=n)
def bias_types(self):
return self.df.bias_type.unique().tolist()
def run(df):
result = "<table><tr style='color: white; background-color: #555'><th>index</th><th>more stereotypical</th><th>gpt2</th><th>gpt2-large</th><th>less stereotypical<th></tr>"
for i, row in df.iterrows():
result += f"<tr><td>{i}</td><td style='padding: 0 1em; background-image: linear-gradient(90deg, rgba(0,255,255,0.2) 0%, rgba(255,255,255,1) 100%)'>{row['sent_more']}</td>"
more = row["sent_more"]
more = tokenizer(more, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_more_gpt = model_gpt(more, labels=more.clone())
out_more_custom = model_custom(more, labels=more.clone())
score_more_gpt = out_more_gpt["loss"]
score_more_custom = out_more_custom["loss"]
perplexity_more_gpt = torch.exp(score_more_gpt).item()
perplexity_more_custom = torch.exp(score_more_custom).item()
less = row["sent_less"]
less = tokenizer(less, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_less_gpt = model_gpt(less, labels=less.clone())
out_less_custom = model_custom(less, labels=less.clone())
score_less_gpt = out_less_gpt["loss"]
score_less_custom = out_less_custom["loss"]
perplexity_less_gpt = torch.exp(score_less_gpt).item()
perplexity_less_custom = torch.exp(score_less_custom).item()
if perplexity_more_gpt > perplexity_less_gpt:
diff = round(
abs((perplexity_more_gpt - perplexity_less_gpt) / perplexity_more_gpt), 2
)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(0,255,255,{shade})'>{diff:.2f}</td>"
else:
diff = abs((perplexity_less_gpt - perplexity_more_gpt) / perplexity_less_gpt)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(255,0,255,{shade})'>{diff:.2f}</td>"
if perplexity_more_custom > perplexity_less_custom:
diff = round(
abs((perplexity_more_custom - perplexity_less_custom) / perplexity_more_custom), 2
)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(0,255,255,{shade})'>{diff:.2f}</td>"
else:
diff = abs((perplexity_less_custom - perplexity_more_custom) / perplexity_less_custom)
shade = (diff + 0.2) / 1.2
result += f"<td style='background-color: rgba(255,0,255,{shade})'>{diff:.2f}</td>"
result += f"<td style='padding: 0 1em; background-image: linear-gradient(90deg, rgba(255,255,255,1) 0%, rgba(255,0,255,0.2) 100%)'>{row['sent_less']}</td></tr>"
result += "</table>"
return result
def sample_and_run(bias_type):
sample = dataset.sample(bias_type)
return run(sample)
def manual_run(more, less):
df = pandas.DataFrame.from_dict({
'sent_more': [more],
'sent_less': [less],
'bias_type': ["manual"],
})
return run(df)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_id = "gpt2"
model_gpt = GPT2LMHeadModel.from_pretrained(model_id).to(device)
model_custom = GPT2LMHeadModel.from_pretrained("iabhijith/GPT2-small-debiased").to(device)
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
dataset = CrowSPairsDataset()
bias_type_sel = gradio.Dropdown(label="Bias Type", choices=dataset.bias_types())
with open("description.md") as fh:
desc = fh.read()
with open("descr-2.md") as fh:
desc2 = fh.read()
with open("notice.md") as fh:
notice = fh.read()
with open("results.md") as fh:
results = fh.read()
with gradio.Blocks(title="Detecting stereotypes in the GPT-2 language model using CrowS-Pairs") as iface:
gradio.Markdown(desc)
with gradio.Row(equal_height=True):
with gradio.Column(scale=4):
bias_sel = gradio.Dropdown(label="Bias Type", choices=dataset.bias_types())
with gradio.Column(scale=1):
but = gradio.Button("Sample")
gradio.Markdown(desc2)
with gradio.Row(equal_height=True):
with gradio.Column(scale=2):
more = gradio.Textbox(label="More stereotypical")
with gradio.Column(scale=2):
less = gradio.Textbox(label="Less stereotypical")
with gradio.Column(scale=1):
manual = gradio.Button("Run")
out = gradio.HTML()
but.click(sample_and_run, bias_sel, out)
manual.click(manual_run, [more, less], out)
with gradio.Accordion("Some more details"):
gradio.Markdown(notice)
with gradio.Accordion("Results for English and French BERT language models"):
gradio.Markdown(results)
iface.launch()