Martijn van Beers
Add option to enter a pair manually
99b20e7
raw
history blame
4.18 kB
import torch
import datasets
import gradio
import pandas
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
class CrowSPairsDataset(object):
def __init__(self):
super().__init__()
self.df = (datasets
.load_dataset("BigScienceBiasEval/crows_pairs_multilingual")["test"]
.to_pandas()
.query('stereo_antistereo == "stereo"')
.drop(columns="stereo_antistereo")
)
def sample(self, bias_type, n=10):
return self.df[self.df["bias_type"] == bias_type].sample(n=n)
def bias_types(self):
return self.df.bias_type.unique().tolist()
def run(df):
result = "<table><tr style='color: white; background-color: #555'><th>index</th><th>more stereotypical</th><th>less stereotypical<th></tr>"
for i, row in df.iterrows():
result += f"<tr><td>{i}</td>"
more = row["sent_more"]
more = tokenizer(more, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_more = model(more, labels=more.clone())
score_more = out_more["loss"]
perplexity_more = torch.exp(score_more).item()
less = row["sent_less"]
less = tokenizer(less, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
out_less = model(less, labels=less.clone())
score_less = out_less["loss"]
perplexity_less = torch.exp(score_less).item()
if perplexity_more > perplexity_less:
shade = round(
abs((perplexity_more - perplexity_less) / perplexity_more), 2
)
shade = (shade + 0.2) / 1.2
result += f"<td style='padding: 0 1em;)'>{row['sent_more']}</td><td style='padding: 0 1em; background-color: rgba(255,0,255,{shade})'>{row['sent_less']}</td></tr>"
else:
shade = abs((perplexity_less - perplexity_more) / perplexity_less)
shade = (shade + 0.2) / 1.2
result += f"<td style='padding: 0 1em; background-color: rgba(0,255,255,{shade})'>{row['sent_more']}</td><td style='padding: 0 1em;'>{row['sent_less']}</td></tr>"
result += "</table>"
return result
def sample_and_run(bias_type):
sample = dataset.sample(bias_type)
return run(sample)
def manual_run(more, less):
df = pandas.DataFrame.from_dict({
'sent_more': [more],
'sent_less': [less],
'bias_type': ["manual"],
})
return run(df)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_id = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
dataset = CrowSPairsDataset()
bias_type_sel = gradio.Dropdown(label="Bias Type", choices=dataset.bias_types())
with open("description.md") as fh:
desc = fh.read()
with open("descr-2.md") as fh:
desc2 = fh.read()
with open("notice.md") as fh:
notice = fh.read()
with open("results.md") as fh:
results = fh.read()
with gradio.Blocks(title="Detecting stereotypes in the GPT-2 language model using CrowS-Pairs") as iface:
gradio.Markdown(desc)
with gradio.Row(equal_height=True):
with gradio.Column(scale=4):
bias_sel = gradio.Dropdown(label="Bias Type", choices=dataset.bias_types())
with gradio.Column(scale=1):
but = gradio.Button("Sample")
gradio.Markdown(desc2)
with gradio.Row(equal_height=True):
with gradio.Column(scale=2):
more = gradio.Textbox(label="More stereotypical")
with gradio.Column(scale=2):
less = gradio.Textbox(label="Less stereotypical")
with gradio.Column(scale=1):
manual = gradio.Button("Run")
out = gradio.HTML()
but.click(sample_and_run, bias_sel, out)
manual.click(manual_run, [more, less], out)
with gradio.Accordion("A note about explainability models"):
gradio.Markdown(notice)
with gradio.Accordion("Results for English and French BERT language models"):
gradio.Markdown(results)
iface.launch()