File size: 2,009 Bytes
c5afbf5
 
fc9fd5b
c5afbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e88ceea
 
 
c5afbf5
 
 
 
 
 
fc9fd5b
c5afbf5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pandas as pd
from pathlib import Path
from ..styles import highlight_color

# Define the absolute path to the file
abs_path = Path(__file__).parent.parent.parent

def load_json_data(file_path):
    # Load the JSON data
    ZAW_SCORES = pd.read_json(file_path)

    # Reset index so model names become a column and transpose for (year, name) pairs as rows
    ZAW_SCORES = ZAW_SCORES.T.reset_index()

    # Rename the first column as 'Model' to keep model names visible
    ZAW_SCORES.rename(columns={'index': 'Model'}, inplace=True)

    # Filter columns that contain 'Egzaminy Gimnazjalne' in the name
    filtered_columns = ['Model'] + [col for col in ZAW_SCORES.columns if "Egzaminy Zawodowe" in col]
    ZAW_SCORES = ZAW_SCORES[filtered_columns]
    ZAW_SCORES["Model"] = ZAW_SCORES["Model"].apply(
        lambda name: f"[{name.replace('__','/')}](https://huggingface.co/{name.replace('__','/')})"
    )

        # Round numeric values to 2 decimal places
    numeric_columns = ZAW_SCORES.columns[1:]  # Get all year columns
    ZAW_SCORES[numeric_columns] = ZAW_SCORES[numeric_columns].apply(pd.to_numeric, errors='coerce') * 100
    ZAW_SCORES[numeric_columns] = ZAW_SCORES[numeric_columns].round(2)

    # Convert year part in column names to strings for Gradio compatibility
    ZAW_SCORES.columns = [col.split(',')[0][1:] if col != 'Model' else col for col in ZAW_SCORES.columns]
    year_columns = ZAW_SCORES.columns[1:]
    sorted_year_columns = sorted(year_columns.astype(str).tolist())  # Sort the year columns as strings
    sorted_columns = ['Model'] + sorted_year_columns
    ZAW_SCORES = ZAW_SCORES[sorted_columns]

    # Sort alphabetically by model name
    ZAW_SCORES = ZAW_SCORES.sort_values(by='Model')
    return ZAW_SCORES

# Define file path
file_path = str(abs_path / "leaderboards/all_types_years.json")
ZAW_SCORES = load_json_data(file_path)
ZAW_SCORES = ZAW_SCORES.style.highlight_max(
    color = highlight_color,
    subset=ZAW_SCORES.columns[-12:]).format(precision=2)