Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -74,12 +74,7 @@ for name, model in models.items():
|
|
74 |
print('\n')
|
75 |
|
76 |
def load_model_and_data():
|
77 |
-
|
78 |
-
# Pour l'exemple, on suppose qu'ils sont disponibles comme:
|
79 |
-
# model = loaded_model
|
80 |
-
# X = loaded_X
|
81 |
-
# y = loaded_y
|
82 |
-
# feature_names = X.columns
|
83 |
model = models['Decision Tree']
|
84 |
data = pd.read_csv('exported_named_train_good.csv')
|
85 |
X = data.drop("Target", axis=1)
|
@@ -95,6 +90,7 @@ from sklearn.tree import plot_tree, export_text
|
|
95 |
import seaborn as sns
|
96 |
from sklearn.preprocessing import LabelEncoder
|
97 |
from dtreeviz import trees
|
|
|
98 |
|
99 |
|
100 |
def app():
|
@@ -153,7 +149,7 @@ def app():
|
|
153 |
st.text(tree_text)
|
154 |
else:
|
155 |
# Création de la visualisation dtreeviz
|
156 |
-
viz =
|
157 |
model,
|
158 |
X,
|
159 |
y,
|
|
|
74 |
print('\n')
|
75 |
|
76 |
def load_model_and_data():
|
77 |
+
|
|
|
|
|
|
|
|
|
|
|
78 |
model = models['Decision Tree']
|
79 |
data = pd.read_csv('exported_named_train_good.csv')
|
80 |
X = data.drop("Target", axis=1)
|
|
|
90 |
import seaborn as sns
|
91 |
from sklearn.preprocessing import LabelEncoder
|
92 |
from dtreeviz import trees
|
93 |
+
from dtreeviz.trees import dtreeviz
|
94 |
|
95 |
|
96 |
def app():
|
|
|
149 |
st.text(tree_text)
|
150 |
else:
|
151 |
# Création de la visualisation dtreeviz
|
152 |
+
viz = dtreeviz(
|
153 |
model,
|
154 |
X,
|
155 |
y,
|