Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,69 @@ import matplotlib.pyplot as plt
|
|
5 |
from sklearn.tree import plot_tree, export_text
|
6 |
import seaborn as sns
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def load_model_and_data():
|
11 |
# Ici vous chargeriez votre modèle et données
|
@@ -14,7 +76,7 @@ def load_model_and_data():
|
|
14 |
# X = loaded_X
|
15 |
# y = loaded_y
|
16 |
# feature_names = X.columns
|
17 |
-
model =
|
18 |
data = pd.read_csv('exported_named_train.csv')
|
19 |
X = data.drop("Target", axis=1)
|
20 |
y = data['Target']
|
|
|
5 |
from sklearn.tree import plot_tree, export_text
|
6 |
import seaborn as sns
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
+
from sklearn.ensemble import RandomForestClassifier
|
9 |
+
from sklearn.tree import DecisionTreeClassifier, plot_tree
|
10 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
11 |
+
from sklearn.linear_model import LogisticRegression
|
12 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
|
13 |
+
|
14 |
+
data = pd.read_csv('exported_named_train.csv')
|
15 |
+
X_train = data.drop("Target", axis=1).values
|
16 |
+
y_train = data['Target'].values
|
17 |
+
|
18 |
+
models={
|
19 |
+
"Logisitic Regression":LogisticRegression(),
|
20 |
+
"Decision Tree":DecisionTreeClassifier(),
|
21 |
+
"Random Forest":RandomForestClassifier(),
|
22 |
+
"Gradient Boost":GradientBoostingClassifier()
|
23 |
+
}
|
24 |
+
|
25 |
+
for name, model in models.items():
|
26 |
+
|
27 |
+
model.fit(X_train, y_train)
|
28 |
+
|
29 |
+
# Make predictions
|
30 |
+
y_train_pred = model.predict(X_train)
|
31 |
+
y_test_pred = model.predict(X_test)
|
32 |
+
|
33 |
+
# Training set performance
|
34 |
+
model_train_accuracy = accuracy_score(y_train, y_train_pred) # Calculate Accuracy
|
35 |
+
model_train_f1 = f1_score(y_train, y_train_pred, average='weighted') # Calculate F1-score
|
36 |
+
model_train_precision = precision_score(y_train, y_train_pred) # Calculate Precision
|
37 |
+
model_train_recall = recall_score(y_train, y_train_pred) # Calculate Recall
|
38 |
+
model_train_rocauc_score = roc_auc_score(y_train, y_train_pred)
|
39 |
+
|
40 |
+
# Test set performance
|
41 |
+
model_test_accuracy = accuracy_score(y_test, y_test_pred) # Calculate Accuracy
|
42 |
+
model_test_f1 = f1_score(y_test, y_test_pred, average='weighted') # Calculate F1-score
|
43 |
+
model_test_precision = precision_score(y_test, y_test_pred) # Calculate Precision
|
44 |
+
model_test_recall = recall_score(y_test, y_test_pred) # Calculate Recall
|
45 |
+
model_test_rocauc_score = roc_auc_score(y_test, y_test_pred) #Calculate Roc
|
46 |
+
|
47 |
+
print(name)
|
48 |
+
|
49 |
+
print('Model performance for Training set')
|
50 |
+
print("- Accuracy: {:.4f}".format(model_train_accuracy))
|
51 |
+
print('- F1 score: {:.4f}'.format(model_train_f1))
|
52 |
+
|
53 |
+
print('- Precision: {:.4f}'.format(model_train_precision))
|
54 |
+
print('- Recall: {:.4f}'.format(model_train_recall))
|
55 |
+
print('- Roc Auc Score: {:.4f}'.format(model_train_rocauc_score))
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
print('----------------------------------')
|
60 |
+
|
61 |
+
print('Model performance for Test set')
|
62 |
+
print('- Accuracy: {:.4f}'.format(model_test_accuracy))
|
63 |
+
print('- F1 score: {:.4f}'.format(model_test_f1))
|
64 |
+
print('- Precision: {:.4f}'.format(model_test_precision))
|
65 |
+
print('- Recall: {:.4f}'.format(model_test_recall))
|
66 |
+
print('- Roc Auc Score: {:.4f}'.format(model_test_rocauc_score))
|
67 |
+
|
68 |
+
|
69 |
+
print('='*35)
|
70 |
+
print('\n')
|
71 |
|
72 |
def load_model_and_data():
|
73 |
# Ici vous chargeriez votre modèle et données
|
|
|
76 |
# X = loaded_X
|
77 |
# y = loaded_y
|
78 |
# feature_names = X.columns
|
79 |
+
model = models['Decision Tree']
|
80 |
data = pd.read_csv('exported_named_train.csv')
|
81 |
X = data.drop("Target", axis=1)
|
82 |
y = data['Target']
|