Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,200 +6,191 @@ from sklearn.tree import plot_tree, export_text
|
|
6 |
import seaborn as sns
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from sklearn.ensemble import RandomForestClassifier
|
9 |
-
from sklearn.tree import DecisionTreeClassifier
|
10 |
from sklearn.ensemble import GradientBoostingClassifier
|
11 |
from sklearn.linear_model import LogisticRegression
|
12 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
X_test = data_test.drop('Target', axis=1)
|
20 |
-
y_test = data_test['Target']
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
model.fit(X_train, y_train)
|
32 |
-
|
33 |
-
# Make predictions
|
34 |
-
y_train_pred = model.predict(X_train)
|
35 |
-
y_test_pred = model.predict(X_test)
|
36 |
-
|
37 |
-
# Training set performance
|
38 |
-
model_train_accuracy = accuracy_score(y_train, y_train_pred) # Calculate Accuracy
|
39 |
-
model_train_f1 = f1_score(y_train, y_train_pred, average='weighted') # Calculate F1-score
|
40 |
-
model_train_precision = precision_score(y_train, y_train_pred) # Calculate Precision
|
41 |
-
model_train_recall = recall_score(y_train, y_train_pred) # Calculate Recall
|
42 |
-
model_train_rocauc_score = roc_auc_score(y_train, y_train_pred)
|
43 |
-
|
44 |
-
# Test set performance
|
45 |
-
model_test_accuracy = accuracy_score(y_test, y_test_pred) # Calculate Accuracy
|
46 |
-
model_test_f1 = f1_score(y_test, y_test_pred, average='weighted') # Calculate F1-score
|
47 |
-
model_test_precision = precision_score(y_test, y_test_pred) # Calculate Precision
|
48 |
-
model_test_recall = recall_score(y_test, y_test_pred) # Calculate Recall
|
49 |
-
model_test_rocauc_score = roc_auc_score(y_test, y_test_pred) #Calculate Roc
|
50 |
-
|
51 |
-
print(name)
|
52 |
-
|
53 |
-
print('Model performance for Training set')
|
54 |
-
print("- Accuracy: {:.4f}".format(model_train_accuracy))
|
55 |
-
print('- F1 score: {:.4f}'.format(model_train_f1))
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
print('- F1 score: {:.4f}'.format(model_test_f1))
|
68 |
-
print('- Precision: {:.4f}'.format(model_test_precision))
|
69 |
-
print('- Recall: {:.4f}'.format(model_test_recall))
|
70 |
-
print('- Roc Auc Score: {:.4f}'.format(model_test_rocauc_score))
|
71 |
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
model = models['Decision Tree']
|
79 |
-
data = pd.read_csv('exported_named_train_good.csv')
|
80 |
-
X = data.drop("Target", axis=1)
|
81 |
-
y = data['Target']
|
82 |
-
|
83 |
-
return model, X, y, X.columns
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
def app():
|
96 |
-
st.title("Interpréteur
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
|
101 |
-
if
|
102 |
-
|
103 |
-
|
|
|
104 |
|
105 |
-
# Sidebar
|
106 |
st.sidebar.title("Navigation")
|
|
|
|
|
|
|
|
|
|
|
107 |
page = st.sidebar.radio(
|
108 |
"Sélectionnez une section",
|
109 |
-
["
|
110 |
-
"
|
111 |
-
"Analyse
|
112 |
"Simulateur de prédictions"]
|
113 |
)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
col1, col2 = st.columns(2)
|
119 |
|
120 |
with col1:
|
121 |
-
st.
|
122 |
-
|
123 |
-
|
124 |
-
'feature': feature_names,
|
125 |
-
'importance': model.feature_importances_
|
126 |
-
}).sort_values('importance', ascending=True)
|
127 |
-
plt.barh(feature_importance['feature'], feature_importance['importance'])
|
128 |
-
st.pyplot(importance_plot)
|
129 |
|
130 |
with col2:
|
131 |
-
st.
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
#
|
136 |
-
elif page == "
|
137 |
-
st.header("
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
model,
|
153 |
-
X,
|
154 |
-
y,
|
155 |
-
target_name="target",
|
156 |
-
feature_names=list(feature_names),
|
157 |
-
class_names=list(map(str, model.classes_)),
|
158 |
-
max_depth=max_depth
|
159 |
-
)
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
st.pyplot(fig)
|
165 |
|
166 |
-
# Analyse
|
167 |
-
elif page == "Analyse
|
168 |
-
st.header("Analyse
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
)
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
else:
|
183 |
-
cohort_def[feat] = pd.qcut(X[feat], q=4, labels=['Q1', 'Q2', 'Q3', 'Q4'])
|
184 |
-
return cohort_def.apply(lambda x: ' & '.join(x.astype(str)), axis=1)
|
185 |
-
|
186 |
-
cohorts = create_cohorts(X, selected_features)
|
187 |
-
|
188 |
-
cohort_analysis = pd.DataFrame({
|
189 |
-
'Cohorte': cohorts,
|
190 |
-
'Prédiction': model.predict(X)
|
191 |
-
})
|
192 |
-
|
193 |
-
cohort_stats = cohort_analysis.groupby('Cohorte')['Prédiction'].agg(['count', 'mean'])
|
194 |
-
cohort_stats.columns = ['Nombre d\'observations', 'Taux de prédiction positive']
|
195 |
-
|
196 |
-
st.write("Statistiques par cohorte:")
|
197 |
-
st.dataframe(cohort_stats)
|
198 |
-
|
199 |
-
cohort_viz = plt.figure(figsize=(10, 6))
|
200 |
-
sns.barplot(data=cohort_analysis, x='Cohorte', y='Prédiction')
|
201 |
-
plt.xticks(rotation=45)
|
202 |
-
st.pyplot(cohort_viz)
|
203 |
|
204 |
# Simulateur de prédictions
|
205 |
else:
|
@@ -207,45 +198,46 @@ def app():
|
|
207 |
|
208 |
input_values = {}
|
209 |
for feature in feature_names:
|
210 |
-
if
|
211 |
input_values[feature] = st.selectbox(
|
212 |
f"Sélectionnez {feature}",
|
213 |
-
options=
|
214 |
)
|
215 |
else:
|
216 |
input_values[feature] = st.slider(
|
217 |
f"Valeur pour {feature}",
|
218 |
-
float(
|
219 |
-
float(
|
220 |
-
float(
|
221 |
)
|
222 |
|
223 |
if st.button("Prédire"):
|
224 |
input_df = pd.DataFrame([input_values])
|
225 |
|
226 |
-
prediction =
|
227 |
|
228 |
st.write("Probabilités prédites:")
|
229 |
st.write({f"Classe {i}": f"{prob:.2%}" for i, prob in enumerate(prediction[0])})
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
249 |
|
250 |
if __name__ == "__main__":
|
251 |
-
app()
|
|
|
6 |
import seaborn as sns
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from sklearn.ensemble import RandomForestClassifier
|
9 |
+
from sklearn.tree import DecisionTreeClassifier
|
10 |
from sklearn.ensemble import GradientBoostingClassifier
|
11 |
from sklearn.linear_model import LogisticRegression
|
12 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
|
13 |
+
import shap
|
14 |
|
15 |
+
def load_data():
|
16 |
+
data = pd.read_csv('exported_named_train_good.csv')
|
17 |
+
data_test = pd.read_csv('exported_named_test_good.csv')
|
18 |
+
X_train = data.drop("Target", axis=1)
|
19 |
+
y_train = data['Target']
|
20 |
+
X_test = data_test.drop('Target', axis=1)
|
21 |
+
y_test = data_test['Target']
|
22 |
+
return X_train, y_train, X_test, y_test, X_train.columns
|
23 |
+
|
24 |
+
def train_models(X_train, y_train, X_test, y_test):
|
25 |
+
models = {
|
26 |
+
"Logistic Regression": LogisticRegression(random_state=42),
|
27 |
+
"Decision Tree": DecisionTreeClassifier(random_state=42),
|
28 |
+
"Random Forest": RandomForestClassifier(random_state=42),
|
29 |
+
"Gradient Boost": GradientBoostingClassifier(random_state=42)
|
30 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
results = {}
|
33 |
+
for name, model in models.items():
|
34 |
+
model.fit(X_train, y_train)
|
35 |
+
|
36 |
+
# Predictions
|
37 |
+
y_train_pred = model.predict(X_train)
|
38 |
+
y_test_pred = model.predict(X_test)
|
39 |
+
|
40 |
+
# Metrics
|
41 |
+
results[name] = {
|
42 |
+
'model': model,
|
43 |
+
'train_metrics': {
|
44 |
+
'accuracy': accuracy_score(y_train, y_train_pred),
|
45 |
+
'f1': f1_score(y_train, y_train_pred, average='weighted'),
|
46 |
+
'precision': precision_score(y_train, y_train_pred),
|
47 |
+
'recall': recall_score(y_train, y_train_pred),
|
48 |
+
'roc_auc': roc_auc_score(y_train, y_train_pred)
|
49 |
+
},
|
50 |
+
'test_metrics': {
|
51 |
+
'accuracy': accuracy_score(y_test, y_test_pred),
|
52 |
+
'f1': f1_score(y_test, y_test_pred, average='weighted'),
|
53 |
+
'precision': precision_score(y_test, y_test_pred),
|
54 |
+
'recall': recall_score(y_test, y_test_pred),
|
55 |
+
'roc_auc': roc_auc_score(y_test, y_test_pred)
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
return results
|
60 |
|
61 |
+
def plot_model_performance(results):
|
62 |
+
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
|
63 |
+
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
|
64 |
|
65 |
+
# Training metrics
|
66 |
+
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
|
67 |
+
for model in results.keys()}
|
68 |
+
train_df = pd.DataFrame(train_data, index=metrics)
|
69 |
+
train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
|
70 |
+
axes[0].set_ylim(0, 1)
|
71 |
|
72 |
+
# Test metrics
|
73 |
+
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
|
74 |
+
for model in results.keys()}
|
75 |
+
test_df = pd.DataFrame(test_data, index=metrics)
|
76 |
+
test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
|
77 |
+
axes[1].set_ylim(0, 1)
|
78 |
|
79 |
+
plt.tight_layout()
|
80 |
+
return fig
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
def plot_feature_importance(model, feature_names, model_type):
|
83 |
+
plt.figure(figsize=(10, 6))
|
84 |
|
85 |
+
if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
|
86 |
+
importance = model.feature_importances_
|
87 |
+
elif model_type == "Logistic Regression":
|
88 |
+
importance = np.abs(model.coef_[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
importance_df = pd.DataFrame({
|
91 |
+
'feature': feature_names,
|
92 |
+
'importance': importance
|
93 |
+
}).sort_values('importance', ascending=True)
|
94 |
+
|
95 |
+
plt.barh(importance_df['feature'], importance_df['importance'])
|
96 |
+
plt.title(f"Feature Importance - {model_type}")
|
97 |
+
return plt.gcf()
|
|
|
98 |
|
99 |
def app():
|
100 |
+
st.title("Interpréteur de Modèles ML")
|
101 |
|
102 |
+
# Load data
|
103 |
+
X_train, y_train, X_test, y_test, feature_names = load_data()
|
104 |
|
105 |
+
# Train models if not in session state
|
106 |
+
if 'model_results' not in st.session_state:
|
107 |
+
with st.spinner("Entraînement des modèles en cours..."):
|
108 |
+
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
|
109 |
|
110 |
+
# Sidebar
|
111 |
st.sidebar.title("Navigation")
|
112 |
+
selected_model = st.sidebar.selectbox(
|
113 |
+
"Sélectionnez un modèle",
|
114 |
+
list(st.session_state.model_results.keys())
|
115 |
+
)
|
116 |
+
|
117 |
page = st.sidebar.radio(
|
118 |
"Sélectionnez une section",
|
119 |
+
["Performance des modèles",
|
120 |
+
"Interprétation du modèle",
|
121 |
+
"Analyse des caractéristiques",
|
122 |
"Simulateur de prédictions"]
|
123 |
)
|
124 |
|
125 |
+
current_model = st.session_state.model_results[selected_model]['model']
|
126 |
+
|
127 |
+
# Performance des modèles
|
128 |
+
if page == "Performance des modèles":
|
129 |
+
st.header("Performance des modèles")
|
130 |
+
|
131 |
+
# Plot global performance comparison
|
132 |
+
st.subheader("Comparaison des performances")
|
133 |
+
performance_fig = plot_model_performance(st.session_state.model_results)
|
134 |
+
st.pyplot(performance_fig)
|
135 |
+
|
136 |
+
# Detailed metrics for selected model
|
137 |
+
st.subheader(f"Métriques détaillées - {selected_model}")
|
138 |
col1, col2 = st.columns(2)
|
139 |
|
140 |
with col1:
|
141 |
+
st.write("Métriques d'entraînement:")
|
142 |
+
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
|
143 |
+
st.write(f"{metric}: {value:.4f}")
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
with col2:
|
146 |
+
st.write("Métriques de test:")
|
147 |
+
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
|
148 |
+
st.write(f"{metric}: {value:.4f}")
|
149 |
|
150 |
+
# Interprétation du modèle
|
151 |
+
elif page == "Interprétation du modèle":
|
152 |
+
st.header(f"Interprétation du modèle - {selected_model}")
|
153 |
|
154 |
+
if selected_model in ["Decision Tree", "Random Forest"]:
|
155 |
+
if selected_model == "Decision Tree":
|
156 |
+
st.subheader("Visualisation de l'arbre")
|
157 |
+
max_depth = st.slider("Profondeur maximale à afficher", 1, 5, 3)
|
158 |
+
fig, ax = plt.subplots(figsize=(20, 10))
|
159 |
+
plot_tree(current_model, feature_names=list(feature_names),
|
160 |
+
max_depth=max_depth, filled=True, rounded=True)
|
161 |
+
st.pyplot(fig)
|
162 |
+
|
163 |
+
st.subheader("Règles de décision importantes")
|
164 |
+
if selected_model == "Decision Tree":
|
165 |
+
st.text(export_text(current_model, feature_names=list(feature_names)))
|
166 |
|
167 |
+
# SHAP values for all models
|
168 |
+
st.subheader("SHAP Values")
|
169 |
+
with st.spinner("Calcul des valeurs SHAP en cours..."):
|
170 |
+
explainer = shap.TreeExplainer(current_model) if selected_model != "Logistic Regression" \
|
171 |
+
else shap.LinearExplainer(current_model, X_train)
|
172 |
+
shap_values = explainer.shap_values(X_train[:100]) # Using first 100 samples for speed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
175 |
+
shap.summary_plot(shap_values, X_train[:100], feature_names=list(feature_names),
|
176 |
+
show=False)
|
177 |
st.pyplot(fig)
|
178 |
|
179 |
+
# Analyse des caractéristiques
|
180 |
+
elif page == "Analyse des caractéristiques":
|
181 |
+
st.header("Analyse des caractéristiques")
|
182 |
|
183 |
+
# Feature importance
|
184 |
+
st.subheader("Importance des caractéristiques")
|
185 |
+
importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
|
186 |
+
st.pyplot(importance_fig)
|
|
|
187 |
|
188 |
+
# Feature correlation
|
189 |
+
st.subheader("Matrice de corrélation")
|
190 |
+
corr_matrix = X_train.corr()
|
191 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
192 |
+
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
|
193 |
+
st.pyplot(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
# Simulateur de prédictions
|
196 |
else:
|
|
|
198 |
|
199 |
input_values = {}
|
200 |
for feature in feature_names:
|
201 |
+
if X_train[feature].dtype == 'object':
|
202 |
input_values[feature] = st.selectbox(
|
203 |
f"Sélectionnez {feature}",
|
204 |
+
options=X_train[feature].unique()
|
205 |
)
|
206 |
else:
|
207 |
input_values[feature] = st.slider(
|
208 |
f"Valeur pour {feature}",
|
209 |
+
float(X_train[feature].min()),
|
210 |
+
float(X_train[feature].max()),
|
211 |
+
float(X_train[feature].mean())
|
212 |
)
|
213 |
|
214 |
if st.button("Prédire"):
|
215 |
input_df = pd.DataFrame([input_values])
|
216 |
|
217 |
+
prediction = current_model.predict_proba(input_df)
|
218 |
|
219 |
st.write("Probabilités prédites:")
|
220 |
st.write({f"Classe {i}": f"{prob:.2%}" for i, prob in enumerate(prediction[0])})
|
221 |
|
222 |
+
if selected_model == "Decision Tree":
|
223 |
+
st.subheader("Chemin de décision")
|
224 |
+
node_indicator = current_model.decision_path(input_df)
|
225 |
+
leaf_id = current_model.apply(input_df)
|
226 |
+
|
227 |
+
node_index = node_indicator.indices[node_indicator.indptr[0]:node_indicator.indptr[1]]
|
228 |
+
|
229 |
+
rules = []
|
230 |
+
for node_id in node_index:
|
231 |
+
if node_id != leaf_id[0]:
|
232 |
+
threshold = current_model.tree_.threshold[node_id]
|
233 |
+
feature = feature_names[current_model.tree_.feature[node_id]]
|
234 |
+
if input_df.iloc[0][feature] <= threshold:
|
235 |
+
rules.append(f"{feature} ≤ {threshold:.2f}")
|
236 |
+
else:
|
237 |
+
rules.append(f"{feature} > {threshold:.2f}")
|
238 |
+
|
239 |
+
for rule in rules:
|
240 |
+
st.write(rule)
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
+
app()
|