analist commited on
Commit
0edf40d
·
verified ·
1 Parent(s): a3fcc35

Upload Choropleth_Sanitary.py

Browse files
Files changed (1) hide show
  1. Choropleth_Sanitary.py +537 -0
Choropleth_Sanitary.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Notes:
5
+ #
6
+ # Les scores de responsabilité varient de -4 à 4 et définissent la propreté du point de vu des agents sanitaires ou des foyers. -4 implique que la slubrité est due aux foyers tandis que 4 implique la salubrité est due aux agents.
7
+ #
8
+ # Le score propreté quant à lui décris le niveau de propreté global en faisant une moyenne des scores des deux parties.
9
+
10
+ # In[1]:
11
+
12
+
13
+ get_ipython().system(' pip install geopandas plotly pandas folium')
14
+
15
+
16
+ # ## Generating dummy data
17
+
18
+ # In[2]:
19
+
20
+
21
+ import numpy as np
22
+ import pandas as pd
23
+ import random
24
+ import json
25
+ import plotly.express as px
26
+
27
+
28
+ # Données de test: Il y a 4 foyers par quartier et 10 quartiers répartis dans 2 communes pour faire les test.
29
+ #
30
+ # NB: En nomenclature, communauté est confondue avec région et quartier avec préfecture.
31
+
32
+ # In[3]:
33
+
34
+
35
+ DATA = [
36
+ {'foyer': 1, 'quartier_id':1, "community_id": 0, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
37
+ {'foyer': 2, 'quartier_id':1, "community_id": 0, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
38
+ {'foyer': 3, 'quartier_id':1, "community_id": 0, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
39
+ {'foyer': 4, 'quartier_id':1, "community_id": 0, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
40
+ {'foyer': 5, 'quartier_id':2, "community_id": 0, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 4},
41
+ {'foyer': 1, 'quartier_id':2, "community_id": 0, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
42
+ {'foyer': 2, 'quartier_id':2, "community_id": 0, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
43
+ {'foyer': 3, 'quartier_id':2, "community_id": 0, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
44
+ {'foyer': 4, 'quartier_id':2, "community_id": 0, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
45
+ {'foyer': 1, 'quartier_id':3, "community_id": 0, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
46
+ {'foyer': 2, 'quartier_id':3, "community_id": 0, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 4, 'score': 4},
47
+ {'foyer': 3, 'quartier_id':3, "community_id": 0, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 2, 'score': 3},
48
+ {'foyer': 4, 'quartier_id':3, "community_id": 0, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
49
+ {'foyer': 1, 'quartier_id':4, "community_id": 0, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
50
+ {'foyer': 2, 'quartier_id':4, "community_id": 0, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
51
+ {'foyer': 3, 'quartier_id':4, "community_id": 0, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
52
+ {'foyer': 4, 'quartier_id':4, "community_id": 0, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
53
+
54
+ {'foyer': 1, 'quartier_id':5, "community_id": 4, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
55
+ {'foyer': 2, 'quartier_id':5, "community_id": 4, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
56
+ {'foyer': 3, 'quartier_id':5, "community_id": 4, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
57
+ {'foyer': 4, 'quartier_id':5, "community_id": 4, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
58
+ {'foyer': 5, 'quartier_id':5, "community_id": 4, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 4},
59
+ {'foyer': 1, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
60
+ {'foyer': 2, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
61
+ {'foyer': 3, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
62
+ {'foyer': 4, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
63
+ {'foyer': 1, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
64
+ {'foyer': 2, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 4, 'score': 4},
65
+ {'foyer': 3, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 2, 'score': 3},
66
+ {'foyer': 4, 'quartier_id':6, "community_id": 4, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
67
+ {'foyer': 1, 'quartier_id':7, "community_id": 4, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
68
+ {'foyer': 2, 'quartier_id':7, "community_id": 4, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
69
+ {'foyer': 3, 'quartier_id':7, "community_id": 4, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
70
+ {'foyer': 4, 'quartier_id':7, "community_id": 4, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
71
+
72
+ {'foyer': 1, 'quartier_id':8, "community_id": 9, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 2, 'score_foyer': 3, 'score': 5/2},
73
+ {'foyer': 2, 'quartier_id':8, "community_id": 9, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 0, 'score': 2},
74
+ {'foyer': 3, 'quartier_id':8, "community_id": 9, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
75
+ {'foyer': 4, 'quartier_id':8, "community_id": 9, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
76
+ {'foyer': 5, 'quartier_id':9, "community_id": 9, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 4},
77
+ {'foyer': 1, 'quartier_id':9, "community_id": 9, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
78
+ {'foyer': 2, 'quartier_id':9, "community_id": 9, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
79
+ {'foyer': 3, 'quartier_id':9, "community_id": 9, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 0, 'score_foyer': 0, 'score': 0},
80
+ {'foyer': 4, 'quartier_id':9, "community_id": 9, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
81
+ {'foyer': 1, 'quartier_id':10, "community_id": 9, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
82
+ {'foyer': 2, 'quartier_id':10, "community_id": 9, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 4, 'score': 4},
83
+ {'foyer': 3, 'quartier_id':10, "community_id": 9, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 2, 'score': 3},
84
+ {'foyer': 4, 'quartier_id':10, "community_id": 9, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
85
+ {'foyer': 1, 'quartier_id':10, "community_id": 9, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 0, 'score_foyer': 0, 'score': 0},
86
+ {'foyer': 2, 'quartier_id':11, "community_id": 9, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
87
+ {'foyer': 3, 'quartier_id':11, "community_id": 9, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 1, 'score_foyer': 1, 'score': 1},
88
+ {'foyer': 4, 'quartier_id':11, "community_id": 9, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
89
+
90
+ {'foyer': 1, 'quartier_id':16, "community_id": 5, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
91
+ {'foyer': 2, 'quartier_id':16, "community_id": 5, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
92
+ {'foyer': 3, 'quartier_id':16, "community_id": 5, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
93
+ {'foyer': 4, 'quartier_id':16, "community_id": 5, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
94
+ {'foyer': 5, 'quartier_id':21, "community_id": 5, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 4},
95
+ {'foyer': 1, 'quartier_id':21, "community_id": 5, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
96
+ {'foyer': 2, 'quartier_id':21, "community_id": 5, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
97
+ {'foyer': 3, 'quartier_id':21, "community_id": 5, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
98
+ {'foyer': 4, 'quartier_id':21, "community_id": 5, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
99
+ {'foyer': 1, 'quartier_id':31, "community_id": 5, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
100
+ {'foyer': 2, 'quartier_id':31, "community_id": 5, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 4, 'score': 4},
101
+ {'foyer': 3, 'quartier_id':31, "community_id": 5, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 2, 'score': 3},
102
+ {'foyer': 4, 'quartier_id':31, "community_id": 5, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
103
+ {'foyer': 1, 'quartier_id':24, "community_id": 5, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
104
+ {'foyer': 2, 'quartier_id':24, "community_id": 5, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
105
+ {'foyer': 3, 'quartier_id':24, "community_id": 5, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
106
+ {'foyer': 4, 'quartier_id':24, "community_id": 5, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
107
+
108
+ {'foyer': 1, 'quartier_id':17, "community_id": 6, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 1, 'score_foyer': 3, 'score': 1},
109
+ {'foyer': 2, 'quartier_id':17, "community_id": 6, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
110
+ {'foyer': 3, 'quartier_id':17, "community_id": 6, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
111
+ {'foyer': 4, 'quartier_id':17, "community_id": 6, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
112
+ {'foyer': 5, 'quartier_id':25, "community_id": 6, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 4},
113
+ {'foyer': 1, 'quartier_id':25, "community_id": 6, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 1, 'score_foyer': 5, 'score': 5},
114
+ {'foyer': 2, 'quartier_id':25, "community_id": 6, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
115
+ {'foyer': 3, 'quartier_id':25, "community_id": 6, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
116
+ {'foyer': 4, 'quartier_id':25, "community_id": 6, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 3, 'score': 3},
117
+ {'foyer': 1, 'quartier_id':32, "community_id": 6, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
118
+ {'foyer': 2, 'quartier_id':32, "community_id": 6, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 4, 'score': 4},
119
+ {'foyer': 3, 'quartier_id':32, "community_id": 6, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 2, 'score': 3},
120
+ {'foyer': 4, 'quartier_id':32, "community_id": 6, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 3, 'score_foyer': 3, 'score': 3},
121
+ {'foyer': 1, 'quartier_id':23, "community_id": 6, 'nom': 'Foyer de Di', "mois": 1, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
122
+ {'foyer': 2, 'quartier_id':23, "community_id": 6, 'nom': 'Foyer de Di', "mois": 2, 'annee':2000, 'score_sanitaire': 5, 'score_foyer': 5, 'score': 5},
123
+ {'foyer': 3, 'quartier_id':24, "community_id": 6, 'nom': 'Foyer de Di', "mois": 3, 'annee':2000, 'score_sanitaire': 4, 'score_foyer': 3, 'score': 1},
124
+ {'foyer': 4, 'quartier_id':25, "community_id": 6, 'nom': 'Foyer de Di', "mois": 4, 'annee':2000, 'score_sanitaire': 2, 'score_foyer': 3, 'score': 3},
125
+ ]
126
+
127
+
128
+ # In[4]:
129
+
130
+
131
+ data = pd.DataFrame(DATA)
132
+ data.head()
133
+
134
+
135
+ # In[5]:
136
+
137
+
138
+ data['score'] = (data['score_sanitaire'] + data['score_foyer']) / 2
139
+ data.head(2)
140
+
141
+
142
+ # In[6]:
143
+
144
+
145
+ data['score responsabilité'] = data['score_sanitaire'] - data['score_foyer']
146
+
147
+
148
+ # In[7]:
149
+
150
+
151
+ data.head()
152
+
153
+
154
+ # In[8]:
155
+
156
+
157
+ np.average(data['score'], axis=0, weights=data.index)
158
+
159
+
160
+ # In[9]:
161
+
162
+
163
+ def moyenne_par_quartier(quartiers, id, scoring="score"):
164
+ quartier = quartiers[quartiers.quartier_id == id]
165
+ return quartier[scoring].mean()
166
+
167
+
168
+ # In[10]:
169
+
170
+
171
+ moyenne_par_quartier(data, 2)
172
+
173
+
174
+ # Moyenne pondérée pour les quartiers qui ont peu de foyers enrégistrés dans une communauté.
175
+
176
+ # In[11]:
177
+
178
+
179
+ def moyenne_par_communaute(data, community_id, scoring="score"):
180
+ community = data[data.community_id == community_id]
181
+ avg = np.average(community[scoring], axis=0, weights=community.index)
182
+ return avg
183
+
184
+
185
+ # In[12]:
186
+
187
+
188
+ moyenne_par_communaute(data, 4)
189
+
190
+
191
+ # In[13]:
192
+
193
+
194
+ def moyenne_par_mois_par_communaute(data, community_id, month, scoring="score"):
195
+ filtered = data[(data.community_id == community_id) & (data.mois == month)]
196
+ avg = np.average(filtered[scoring], axis=0, weights=filtered.index)
197
+ return avg
198
+
199
+
200
+ # In[14]:
201
+
202
+
203
+ def moyenne_par_mois_par_quartier(data, quartier_id, month, scoring="score"):
204
+ filtered = data[(data.quartier_id == quartier_id) & (data.mois == month)]
205
+ avg = np.average(filtered[scoring], axis=0, weights=filtered.index)
206
+ return avg
207
+
208
+
209
+ # In[15]:
210
+
211
+
212
+ def moyenne_par_annee_par_communaute(data, community_id, year, scoring="score"):
213
+ filtered = data[(data.community_id == community_id) & (data.annee == year)]
214
+ avg = np.average(filtered[scoring], axis=0, weights=filtered.index)
215
+ return avg
216
+
217
+
218
+ # In[16]:
219
+
220
+
221
+ def moyenne_par_annee_par_quartier(data, quartier_id, year, scoring="score"):
222
+ filtered = data[(data.quartier_id == quartier_id) & (data.mois == year)]
223
+ avg = np.average(filtered[scoring], axis=0, weights=filtered.index)
224
+ return avg
225
+
226
+
227
+ # ##Plot Map
228
+
229
+ # In[17]:
230
+
231
+
232
+ import plotly.io as pio
233
+ pio.renderers.default = 'browser'
234
+
235
+
236
+ # In[18]:
237
+
238
+
239
+ import geopandas as gpd
240
+ import folium
241
+ from IPython.display import display
242
+
243
+ # Specify the path to your GeoJSON file
244
+ geojson_file_path = 'BNDA_TGO_2017-06-29_lastupdate.geojson'
245
+ geojson_data = json.load(open(geojson_file_path, "r"))
246
+ # Read the GeoJSON file using geopandas
247
+ gdf = gpd.read_file(geojson_file_path)
248
+
249
+
250
+ # On définit ici quelques outils pour faire la correspondance id vers quartier et communauté (vice-versa).
251
+
252
+ # In[19]:
253
+
254
+
255
+ id_quartier = {}
256
+
257
+ for row in gdf.iterrows():
258
+ id_quartier[row[0]] = row[1][4]
259
+ #id_quartier
260
+
261
+
262
+ # In[20]:
263
+
264
+
265
+ quartier_id = {}
266
+
267
+ for row in gdf.iterrows():
268
+ quartier_id[row[1][4]] = row[0]
269
+
270
+
271
+ # In[21]:
272
+
273
+
274
+ id_regions = {}
275
+
276
+ for row in gdf.iterrows():
277
+ if row[1][3] not in id_regions.values():
278
+ id_regions[row[0]] = row[1][3]
279
+
280
+
281
+ # In[22]:
282
+
283
+
284
+ id_regions
285
+
286
+
287
+ # In[23]:
288
+
289
+
290
+ data['quartier_name'] = data['quartier_id'].apply(lambda x: id_quartier[x])
291
+ data['community_name'] = data['community_id'].apply(lambda x: id_regions[x])
292
+ data.head()
293
+
294
+
295
+ # In[ ]:
296
+
297
+
298
+
299
+
300
+
301
+ # In[25]:
302
+
303
+
304
+ quartiers = data['quartier_name'].unique().tolist()
305
+
306
+
307
+ # In[26]:
308
+
309
+
310
+ qm = {}
311
+ for q in quartiers:
312
+ qm[q] = moyenne_par_quartier(data, quartier_id[q])
313
+
314
+ #qm
315
+
316
+
317
+ # In[27]:
318
+
319
+
320
+ ids = [quartier_id[q] for q in quartiers]
321
+
322
+
323
+ # In[28]:
324
+
325
+
326
+ quartiers = list(qm.keys())
327
+
328
+
329
+ # In[29]:
330
+
331
+
332
+ scores = list(qm.values())
333
+
334
+
335
+ # #Scores de propreté - Par quartiers (préfectures)
336
+
337
+ # In[30]:
338
+
339
+
340
+ new_df = pd.DataFrame(data={
341
+ 'quartier': quartiers,
342
+ 'scores': scores,
343
+ "quartier_id": ids
344
+ })
345
+ new_df.head()
346
+
347
+
348
+ # In[31]:
349
+
350
+
351
+ new_df.to_csv('new_df.csv', index=False)
352
+
353
+
354
+ # In[39]:
355
+
356
+
357
+ qs = new_df['quartier'].tolist()
358
+ new_gdf_q = gdf[gdf.adm2nm.isin(qs)]
359
+
360
+
361
+ # In[59]:
362
+
363
+
364
+ gdf_merged_q = pd.merge(new_gdf_q, new_df, how='left', left_on="adm2nm", right_on="quartier")
365
+
366
+
367
+ # In[60]:
368
+
369
+
370
+ gdf_merged_q.head()
371
+
372
+
373
+ # In[61]:
374
+
375
+
376
+ geojson = gdf_merged_q.__geo_interface__
377
+
378
+
379
+ # In[109]:
380
+
381
+
382
+ geojson
383
+
384
+
385
+ # In[75]:
386
+
387
+
388
+ gdf_merged_q[gdf_merged_q['adm2nm'] == "Blitta"]
389
+
390
+
391
+ # # Map Scores de propreté pour les Préfectures du Togo
392
+
393
+ # Note: la carte est centrée. Il faut zoomer en arrière pour avoir le rendu.
394
+
395
+ # In[86]:
396
+
397
+
398
+ fig = px.choropleth_mapbox(gdf_merged_q,
399
+ geojson=geojson,
400
+ locations=gdf_merged_q.index,
401
+ color='scores',
402
+ mapbox_style="carto-positron",
403
+ title="Scores de Propreté Pour Les Préfectures Du Togo",
404
+ hover_name="adm2nm",
405
+ color_continuous_scale="Viridis"
406
+ )
407
+ fig.update_layout(margin={'r':0, 't':0, "l": 0, 'r': 0})
408
+ fig.show()
409
+
410
+
411
+ # In[101]:
412
+
413
+
414
+ gdf_merged_q.to_csv('merged_q.csv', index=False)
415
+
416
+
417
+ # In[ ]:
418
+
419
+
420
+
421
+
422
+
423
+ # # Scores de propreté - par régions
424
+
425
+ # In[78]:
426
+
427
+
428
+ id_regions
429
+
430
+
431
+ # In[79]:
432
+
433
+
434
+ regions_id = list(id_regions.keys())
435
+ scores = list()
436
+
437
+
438
+ # In[80]:
439
+
440
+
441
+ rm = {}
442
+ for q in regions_id:
443
+ print(q)
444
+ rm[q] = moyenne_par_communaute(data, q)
445
+
446
+ rm
447
+
448
+
449
+ # In[81]:
450
+
451
+
452
+ regions = [id_regions[i] for i in regions_id]
453
+ scores = list(rm.values())
454
+
455
+
456
+ # In[82]:
457
+
458
+
459
+ region_df = pd.DataFrame({
460
+ 'region_id': regions_id,
461
+ 'region': regions,
462
+ 'scores': scores
463
+ })
464
+
465
+ region_df.head()
466
+
467
+
468
+ # In[ ]:
469
+
470
+
471
+
472
+
473
+
474
+ # # Score de responsabilité - par quartiers (Préfectures)
475
+
476
+ # In[93]:
477
+
478
+
479
+ qm = {}
480
+ for q in quartiers:
481
+ qm[q] = moyenne_par_quartier(data, quartier_id[q], scoring="score responsabilité")
482
+
483
+
484
+ # In[94]:
485
+
486
+
487
+ ids = [quartier_id[q] for q in quartiers]
488
+ quartiers = list(qm.keys())
489
+ scores = list(qm.values())
490
+
491
+
492
+ # In[95]:
493
+
494
+
495
+ respon_df = pd.DataFrame(data={
496
+ 'quartier': quartiers,
497
+ 'scores': scores,
498
+ "quartier_id": ids
499
+ })
500
+ respon_df.head()
501
+
502
+
503
+ # In[102]:
504
+
505
+
506
+ gdf_merged_q_r = pd.merge(new_gdf_q, respon_df, left_on="adm2nm", right_on="quartier", how='left')
507
+ gdf_merged_q_r.to_csv('merged_q_r.csv', index=False)
508
+ gdf_merged_q_r.head()
509
+
510
+
511
+ # In[ ]:
512
+
513
+
514
+
515
+
516
+
517
+ # In[100]:
518
+
519
+
520
+ fig = px.choropleth_mapbox(gdf_merged_q_r,
521
+ geojson=geojson,
522
+ locations=gdf_merged_q.index,
523
+ color='scores',
524
+ mapbox_style="carto-positron",
525
+ title="Scores de Propreté Pour Les Préfectures Du Togo",
526
+ hover_name="adm2nm",
527
+ color_continuous_scale="Viridis"
528
+ )
529
+ fig.update_layout(margin={'r':0, 't':0, "l": 0, 'r': 0})
530
+ fig.show()
531
+
532
+
533
+ # In[ ]:
534
+
535
+
536
+
537
+