analytics-jiten commited on
Commit
1e6032a
·
1 Parent(s): 0565c21

Create classifier.py

Browse files
Files changed (1) hide show
  1. classifier.py +56 -0
classifier.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import library
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import numpy as np
5
+ from PIL import Image
6
+ import pickle
7
+ import json
8
+ import matplotlib.pyplot as plt
9
+ import tensorflow as tf
10
+ from tensorflow import keras
11
+ from tensorflow.keras.models import load_model
12
+ from tensorflow.keras.preprocessing import image
13
+ from tensorflow.keras.applications.efficientnet import preprocess_input
14
+
15
+ # Load trained model
16
+ model = load_model('emotion_detection.h5', compile=False)
17
+ # Define class labels
18
+ class_labels = ['Contempt', 'angry', 'disgust','fear','happy','neutral','sad','surprised']
19
+
20
+ def predict_and_display(uploaded_file, model, class_labels):
21
+ img = Image.open(uploaded_file)
22
+ img = img.resize((224, 224))
23
+ img_array = np.array(img)
24
+ img_array = np.expand_dims(img_array, axis=0)
25
+ img_array = preprocess_input(img_array)
26
+
27
+ prediction = model.predict(img_array)
28
+ predicted_class_index = np.argmax(prediction)
29
+ predicted_class_label = class_labels[predicted_class_index]
30
+
31
+ st.image(img, use_column_width=True)
32
+ st.write(f"Detected Emoption of the Facial Expression is: {predicted_class_label}")
33
+
34
+ def run():
35
+ st.write('##### Facial Emotions/Expressions Detection')
36
+ # Making Form
37
+ # Create a Streamlit form
38
+ with st.form(key='Facial Emotions/Expressions Detection'):
39
+ # Add a file uploader to the form
40
+ uploaded_files = st.file_uploader("Upload a file of one of these format .JPEG/.JPG/.PNG file", accept_multiple_files=True)
41
+
42
+ # Check if any file is uploaded
43
+ if uploaded_files:
44
+ for uploaded_file in uploaded_files:
45
+ st.write("filename:", uploaded_file.name)
46
+ # Close the form
47
+ submitted = st.form_submit_button('Predict')
48
+
49
+ if submitted:
50
+ for uploaded_file in uploaded_files:
51
+ # Use the predict_and_display function with the uploaded image data
52
+ predict_and_display(uploaded_file, model, class_labels)
53
+
54
+
55
+ if __name__ == '__main__':
56
+ run()