# Import library import streamlit as st import pandas as pd import numpy as np from PIL import Image import pickle import json import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.efficientnet import preprocess_input # Load trained model model = load_model('emotion_detection.h5', compile=False) # Define class labels class_labels = ['Contempt', 'angry', 'disgust','fear','happy','neutral','sad','surprised'] def predict_and_display(uploaded_file, model, class_labels): img = Image.open(uploaded_file) img = img.resize((256, 256)) img_array = np.array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) prediction = model.predict(img_array) predicted_class_index = np.argmax(prediction) predicted_class_label = class_labels[predicted_class_index] st.markdown(f"

Recognized Emotion of the Facial Expression is:

{predicted_class_label}

",unsafe_allow_html=True) st.image(img, use_column_width=True) def run(): st.write('##### Facial Emotions/Expressions Recognition') # Making Form # Create a Streamlit form with st.form(key='Facial Emotions/Expressions Recognition'): # Add a file uploader to the form uploaded_files = st.file_uploader("Upload a file of one of these format .JPEG/.JPG/.PNG file", accept_multiple_files=True) # Check if any file is uploaded if uploaded_files: for uploaded_file in uploaded_files: st.write("filename:", uploaded_file.name) # Close the form submitted = st.form_submit_button('Recognize') if submitted: for uploaded_file in uploaded_files: # Use the predict_and_display function with the uploaded image data predict_and_display(uploaded_file, model, class_labels) if __name__ == '__main__': run()