# Import library import streamlit as st import pandas as pd import numpy as np from PIL import Image import pickle import json import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.efficientnet import preprocess_input # Load trained model model = load_model('emotion_detection.h5', compile=False) # Define class labels class_labels = ['Contempt', 'angry', 'disgust','fear','happy','neutral','sad','surprised'] def predict_and_display(uploaded_file, model, class_labels): img = Image.open(uploaded_file) img = img.resize((256, 256)) img_array = np.array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) prediction = model.predict(img_array) predicted_class_index = np.argmax(prediction) predicted_class_label = class_labels[predicted_class_index] st.markdown(f"