Spaces:
Sleeping
Sleeping
Commit
·
ae1a672
1
Parent(s):
8b9d0c0
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import warnings
|
5 |
+
warnings.filterwarnings('ignore')
|
6 |
+
|
7 |
+
data = pd.read_csv("Placement_Data_Full_Class.csv")
|
8 |
+
|
9 |
+
X = data.drop(["sl_no","status","salary"],axis=1)
|
10 |
+
y = data["status"]
|
11 |
+
|
12 |
+
X = pd.get_dummies(X,drop_first=True)
|
13 |
+
y = pd.get_dummies(y,drop_first=True)
|
14 |
+
|
15 |
+
from sklearn.preprocessing import MinMaxScaler
|
16 |
+
scaler = MinMaxScaler()
|
17 |
+
X = scaler.fit_transform(X)
|
18 |
+
|
19 |
+
from sklearn.model_selection import train_test_split
|
20 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
|
21 |
+
|
22 |
+
from sklearn.linear_model import LogisticRegression
|
23 |
+
model = LogisticRegression()
|
24 |
+
|
25 |
+
model.fit(X_train,y_train)
|
26 |
+
|
27 |
+
def prediction(name,gender,ssc_p,ssc_b,hsc_p,hsc_b,hsc_s,degree_p,degree_t,workex,etest_p,specialisation,mba_p):
|
28 |
+
df = pd.DataFrame({"gender":gender,
|
29 |
+
"ssc_p":float(ssc_p),"ssc_b":ssc_b,"hsc_p":int(hsc_p),"hsc_b":hsc_b,"hsc_s":hsc_s,
|
30 |
+
"degree_p":float(degree_p),
|
31 |
+
"degree_t":degree_t,"workex":workex,"etest_p":float(etest_p),"specialisation":specialisation,
|
32 |
+
"mba_p":float(mba_p)
|
33 |
+
},index=[0])
|
34 |
+
data = pd.read_csv("Placement_Data_Full_Class.csv")
|
35 |
+
data = data.drop(["sl_no","status","salary"],axis=1)
|
36 |
+
data = data.append(df,ignore_index = True)
|
37 |
+
data = pd.get_dummies(data,drop_first = True)
|
38 |
+
data = scaler.fit_transform(data)
|
39 |
+
var = model.predict(data[[-1]])
|
40 |
+
if var == 1:
|
41 |
+
return "Congratulations! "+name+", you have a high chance of getting placed."
|
42 |
+
else:
|
43 |
+
return "Sorry! "+name+", better luck next time."
|
44 |
+
|
45 |
+
import gradio as gr
|
46 |
+
|
47 |
+
interface = gr.Interface(prediction,inputs=[
|
48 |
+
gr.Textbox(lines=2, placeholder="Enter your Name Here...", show_label = False),
|
49 |
+
gr.Dropdown(choices=["M","F"],value = "M",label = "Select your Gender"),
|
50 |
+
gr.Textbox(lines=2, placeholder="Enter your SSC Percentage Here...", show_label = False),
|
51 |
+
gr.Dropdown(choices=["Central","Others"],value = "Central",label = "Select your SSC Board"),
|
52 |
+
gr.Textbox(lines=2, placeholder="Enter your HSC Percentage Here...",show_label = False),
|
53 |
+
gr.Dropdown(choices=["Central","Others"],value = "Others",label = "Select your HSC Board"),
|
54 |
+
gr.Dropdown(choices=["Commerce","Science","Arts"],value = "Commerce",label = "Select your HSC Stream"),
|
55 |
+
gr.Textbox(lines=2, placeholder="Enter your Degree Percentage Here...",show_label = False),
|
56 |
+
gr.Dropdown(choices=["Comm&Mgmt","Sci&Tech","Others"],value = "Comm&Mgmt",label = "Select your Degree Domain"),
|
57 |
+
gr.Dropdown(choices=["No","Yes"],value = "No",label = "Select Whether you have prior Work Experience"),
|
58 |
+
gr.Textbox(lines=2, placeholder="Enter your E Test Percentage Here...",show_label = False),
|
59 |
+
gr.Dropdown(choices=["Mkt&Fin","Mkt&HR"],value = "Mkt&Fin",label = "Select your Specialisation"),
|
60 |
+
gr.Textbox(lines=2, placeholder="Enter your MBA Percentage Here...",show_label = False)
|
61 |
+
],outputs = gr.Label(value = "Prediction"),description = "Predicting Placement Chances")
|
62 |
+
|
63 |
+
interface.launch()
|