Spaces:
Running
Running
Delete app_27.py
Browse files
app_27.py
DELETED
@@ -1,502 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from transformers import AutoConfig, AutoTokenizer, AutoModel
|
4 |
-
from huggingface_hub import login
|
5 |
-
import re
|
6 |
-
import copy
|
7 |
-
from modeling_st2 import ST2ModelV2, SignalDetector
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
from safetensors.torch import load_file
|
10 |
-
|
11 |
-
hf_token = st.secrets["HUGGINGFACE_TOKEN"]
|
12 |
-
login(token=hf_token)
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Load model & tokenizer once (cached for efficiency)
|
17 |
-
@st.cache_resource
|
18 |
-
def load_model():
|
19 |
-
|
20 |
-
config = AutoConfig.from_pretrained("roberta-large")
|
21 |
-
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True)
|
23 |
-
|
24 |
-
class Args:
|
25 |
-
def __init__(self):
|
26 |
-
|
27 |
-
self.dropout = 0.1
|
28 |
-
self.signal_classification = True
|
29 |
-
self.pretrained_signal_detector = False
|
30 |
-
|
31 |
-
args = Args()
|
32 |
-
|
33 |
-
model = ST2ModelV2(args)
|
34 |
-
|
35 |
-
|
36 |
-
repo_id = "anamargarida/SpanExtractionWithSignalCls_2"
|
37 |
-
filename = "model.safetensors"
|
38 |
-
|
39 |
-
# Download the model file
|
40 |
-
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
41 |
-
|
42 |
-
# Load the model weights
|
43 |
-
state_dict = load_file(model_path)
|
44 |
-
|
45 |
-
model.load_state_dict(state_dict)
|
46 |
-
|
47 |
-
return tokenizer, model
|
48 |
-
|
49 |
-
# Load the model and tokenizer
|
50 |
-
tokenizer, model = load_model()
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
model.eval() # Set model to evaluation mode
|
55 |
-
def extract_arguments(text, tokenizer, model, beam_search=True):
|
56 |
-
|
57 |
-
class Args:
|
58 |
-
def __init__(self):
|
59 |
-
self.signal_classification = True
|
60 |
-
self.pretrained_signal_detector = False
|
61 |
-
|
62 |
-
args = Args()
|
63 |
-
inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt")
|
64 |
-
|
65 |
-
# Get tokenized words (for reconstruction later)
|
66 |
-
word_ids = inputs.word_ids()
|
67 |
-
|
68 |
-
with torch.no_grad():
|
69 |
-
outputs = model(**inputs)
|
70 |
-
|
71 |
-
|
72 |
-
# Extract logits
|
73 |
-
start_cause_logits = outputs["start_arg0_logits"][0]
|
74 |
-
end_cause_logits = outputs["end_arg0_logits"][0]
|
75 |
-
start_effect_logits = outputs["start_arg1_logits"][0]
|
76 |
-
end_effect_logits = outputs["end_arg1_logits"][0]
|
77 |
-
start_signal_logits = outputs["start_sig_logits"][0]
|
78 |
-
end_signal_logits = outputs["end_sig_logits"][0]
|
79 |
-
|
80 |
-
|
81 |
-
# Set the first and last token logits to a very low value to ignore them
|
82 |
-
start_cause_logits[0] = -1e-4
|
83 |
-
end_cause_logits[0] = -1e-4
|
84 |
-
start_effect_logits[0] = -1e-4
|
85 |
-
end_effect_logits[0] = -1e-4
|
86 |
-
start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
87 |
-
end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
88 |
-
start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
89 |
-
end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
90 |
-
|
91 |
-
|
92 |
-
# Beam Search for position selection
|
93 |
-
if beam_search:
|
94 |
-
indices1, indices2, _, _, _ = model.beam_search_position_selector(
|
95 |
-
start_cause_logits=start_cause_logits,
|
96 |
-
end_cause_logits=end_cause_logits,
|
97 |
-
start_effect_logits=start_effect_logits,
|
98 |
-
end_effect_logits=end_effect_logits,
|
99 |
-
topk=5
|
100 |
-
)
|
101 |
-
start_cause1, end_cause1, start_effect1, end_effect1 = indices1
|
102 |
-
start_cause2, end_cause2, start_effect2, end_effect2 = indices2
|
103 |
-
else:
|
104 |
-
start_cause1 = start_cause_logits.argmax().item()
|
105 |
-
end_cause1 = end_cause_logits.argmax().item()
|
106 |
-
start_effect1 = start_effect_logits.argmax().item()
|
107 |
-
end_effect1 = end_effect_logits.argmax().item()
|
108 |
-
|
109 |
-
start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None
|
110 |
-
|
111 |
-
|
112 |
-
has_signal = 1
|
113 |
-
if args.signal_classification:
|
114 |
-
if not args.pretrained_signal_detector:
|
115 |
-
has_signal = outputs["signal_classification_logits"].argmax().item()
|
116 |
-
else:
|
117 |
-
has_signal = signal_detector.predict(text=batch["text"])
|
118 |
-
|
119 |
-
if has_signal:
|
120 |
-
start_signal_logits[0] = -1e-4
|
121 |
-
end_signal_logits[0] = -1e-4
|
122 |
-
|
123 |
-
start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
124 |
-
end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4
|
125 |
-
|
126 |
-
start_signal = start_signal_logits.argmax().item()
|
127 |
-
end_signal_logits[:start_signal] = -1e4
|
128 |
-
end_signal_logits[start_signal + 5:] = -1e4
|
129 |
-
end_signal = end_signal_logits.argmax().item()
|
130 |
-
|
131 |
-
if not has_signal:
|
132 |
-
start_signal, end_signal = None, None
|
133 |
-
|
134 |
-
|
135 |
-
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
136 |
-
token_ids = inputs["input_ids"][0]
|
137 |
-
offset_mapping = inputs["offset_mapping"][0].tolist()
|
138 |
-
|
139 |
-
for i, (token, word_id) in enumerate(zip(tokens, word_ids)):
|
140 |
-
st.write(f"Token {i}: {token}, Word ID: {word_id}")
|
141 |
-
|
142 |
-
st.write("Token & offset:")
|
143 |
-
for i, (token, offset) in enumerate(zip(tokens, offset_mapping)):
|
144 |
-
st.write(f"Token {i}: {token}, Offset: {offset}")
|
145 |
-
|
146 |
-
|
147 |
-
st.write("Token Positions, IDs, and Corresponding Tokens:")
|
148 |
-
for position, (token_id, token) in enumerate(zip(token_ids, tokens)):
|
149 |
-
st.write(f"Position: {position}, ID: {token_id}, Token: {token}")
|
150 |
-
|
151 |
-
st.write(f"Start Cause 1: {start_cause1}, End Cause: {end_cause1}")
|
152 |
-
st.write(f"Start Effect 1: {start_effect1}, End Cause: {end_effect1}")
|
153 |
-
st.write(f"Start Signal: {start_signal}, End Signal: {end_signal}")
|
154 |
-
|
155 |
-
def extract_span(start, end):
|
156 |
-
return tokenizer.convert_tokens_to_string(tokens[start:end+1]) if start is not None and end is not None else ""
|
157 |
-
|
158 |
-
cause1 = extract_span(start_cause1, end_cause1)
|
159 |
-
cause2 = extract_span(start_cause2, end_cause2)
|
160 |
-
effect1 = extract_span(start_effect1, end_effect1)
|
161 |
-
effect2 = extract_span(start_effect2, end_effect2)
|
162 |
-
if has_signal:
|
163 |
-
signal = extract_span(start_signal, end_signal)
|
164 |
-
if not has_signal:
|
165 |
-
signal = 'NA'
|
166 |
-
list1 = [start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal]
|
167 |
-
list2 = [start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal]
|
168 |
-
#return cause1, cause2, effect1, effect2, signal, list1, list2
|
169 |
-
#return start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal
|
170 |
-
|
171 |
-
# Find the first valid token in a multi-token word
|
172 |
-
def find_valid_start(position):
|
173 |
-
while position > 0 and word_ids[position] == word_ids[position - 1]:
|
174 |
-
position -= 1
|
175 |
-
return position
|
176 |
-
|
177 |
-
def find_valid_end(position):
|
178 |
-
while position < len(word_ids) - 1 and word_ids[position] == word_ids[position + 1]:
|
179 |
-
position += 1
|
180 |
-
return position
|
181 |
-
|
182 |
-
|
183 |
-
# Add the argument tags in the sentence directly
|
184 |
-
def add_tags(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
|
185 |
-
space_splitted_tokens = original_text.split(" ")
|
186 |
-
this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
|
187 |
-
|
188 |
-
def safe_insert(tag, position, start=True):
|
189 |
-
"""Safely insert a tag, checking for None values and index validity."""
|
190 |
-
if position is not None and word_ids[position] is not None:
|
191 |
-
word_index = word_ids[position]
|
192 |
-
|
193 |
-
# Ensure word_index is within range
|
194 |
-
if 0 <= word_index < len(this_space_splitted_tokens):
|
195 |
-
if start:
|
196 |
-
this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
|
197 |
-
else:
|
198 |
-
this_space_splitted_tokens[word_index] += tag
|
199 |
-
|
200 |
-
# Add argument tags safely
|
201 |
-
safe_insert('<ARG0>', start_cause, start=True)
|
202 |
-
safe_insert('</ARG0>', end_cause, start=False)
|
203 |
-
safe_insert('<ARG1>', start_effect, start=True)
|
204 |
-
safe_insert('</ARG1>', end_effect, start=False)
|
205 |
-
|
206 |
-
# Add signal tags safely (if signal exists)
|
207 |
-
if start_signal is not None and end_signal is not None:
|
208 |
-
safe_insert('<SIG0>', start_signal, start=True)
|
209 |
-
safe_insert('</SIG0>', end_signal, start=False)
|
210 |
-
|
211 |
-
# Join tokens back into a string
|
212 |
-
return ' '.join(this_space_splitted_tokens)
|
213 |
-
|
214 |
-
def add_tags_find(original_text, word_ids, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
|
215 |
-
space_splitted_tokens = original_text.split(" ")
|
216 |
-
this_space_splitted_tokens = copy.deepcopy(space_splitted_tokens)
|
217 |
-
|
218 |
-
def safe_insert(tag, position, start=True):
|
219 |
-
"""Safely insert a tag, checking for None values and index validity."""
|
220 |
-
if position is not None and word_ids[position] is not None:
|
221 |
-
word_index = word_ids[position]
|
222 |
-
|
223 |
-
# Ensure word_index is within range
|
224 |
-
if 0 <= word_index < len(this_space_splitted_tokens):
|
225 |
-
if start:
|
226 |
-
this_space_splitted_tokens[word_index] = tag + this_space_splitted_tokens[word_index]
|
227 |
-
else:
|
228 |
-
this_space_splitted_tokens[word_index] += tag
|
229 |
-
|
230 |
-
# Find valid start and end positions for words
|
231 |
-
start_cause = find_valid_start(start_cause)
|
232 |
-
end_cause = find_valid_end(end_cause)
|
233 |
-
start_effect = find_valid_start(start_effect)
|
234 |
-
end_effect = find_valid_end(end_effect)
|
235 |
-
if start_signal is not None:
|
236 |
-
start_signal = find_valid_start(start_signal)
|
237 |
-
end_signal = find_valid_end(end_signal)
|
238 |
-
|
239 |
-
# Adjust for punctuation shifts
|
240 |
-
if tokens[end_cause] in [".", ",", "-", ":", ";"]:
|
241 |
-
end_cause -= 1
|
242 |
-
if tokens[end_effect] in [".", ",", "-", ":", ";"]:
|
243 |
-
end_effect -= 1
|
244 |
-
|
245 |
-
# Add argument tags safely
|
246 |
-
safe_insert('<ARG0>', start_cause, start=True)
|
247 |
-
safe_insert('</ARG0>', end_cause, start=False)
|
248 |
-
safe_insert('<ARG1>', start_effect, start=True)
|
249 |
-
safe_insert('</ARG1>', end_effect, start=False)
|
250 |
-
|
251 |
-
# Add signal tags safely (if signal exists)
|
252 |
-
if start_signal is not None and end_signal is not None:
|
253 |
-
safe_insert('<SIG0>', start_signal, start=True)
|
254 |
-
safe_insert('</SIG0>', end_signal, start=False)
|
255 |
-
|
256 |
-
# Join tokens back into a string
|
257 |
-
return ' '.join(this_space_splitted_tokens)
|
258 |
-
|
259 |
-
def add_tags_offset(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
|
260 |
-
"""
|
261 |
-
Inserts tags into the original text based on token offsets.
|
262 |
-
|
263 |
-
Args:
|
264 |
-
text (str): The original input text.
|
265 |
-
tokenizer: The tokenizer used for tokenization.
|
266 |
-
start_cause (int): Start token index of the cause span.
|
267 |
-
end_cause (int): End token index of the cause span.
|
268 |
-
start_effect (int): Start token index of the effect span.
|
269 |
-
end_effect (int): End token index of the effect span.
|
270 |
-
start_signal (int, optional): Start token index of the signal span.
|
271 |
-
end_signal (int, optional): End token index of the signal span.
|
272 |
-
|
273 |
-
Returns:
|
274 |
-
str: The modified text with annotated spans.
|
275 |
-
"""
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
# Convert token-based indices to character-based indices
|
280 |
-
start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
|
281 |
-
start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
|
282 |
-
|
283 |
-
# Insert tags into the original text
|
284 |
-
annotated_text = text[:start_cause_char] + "<ARG0>" + text[start_cause_char:end_cause_char] + "</ARG0>" + text[end_cause_char:start_effect_char] + "<ARG1>" + text[start_effect_char:end_effect_char] + "</ARG1>" + text[end_effect_char:]
|
285 |
-
|
286 |
-
# If signal span exists, insert signal tags
|
287 |
-
if start_signal is not None and end_signal is not None:
|
288 |
-
start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
|
289 |
-
annotated_text = (
|
290 |
-
annotated_text[:start_signal_char]
|
291 |
-
+ "<SIG0>" + annotated_text[start_signal_char:end_signal_char] + "</SIG0>"
|
292 |
-
+ annotated_text[end_signal_char:]
|
293 |
-
)
|
294 |
-
|
295 |
-
return annotated_text
|
296 |
-
|
297 |
-
def add_tags_offset_2(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
|
298 |
-
"""
|
299 |
-
Inserts tags into the original text based on token offsets.
|
300 |
-
|
301 |
-
Args:
|
302 |
-
text (str): The original input text.
|
303 |
-
offset_mapping (list of tuples): Maps token indices to character spans.
|
304 |
-
start_cause (int): Start token index of the cause span.
|
305 |
-
end_cause (int): End token index of the cause span.
|
306 |
-
start_effect (int): Start token index of the effect span.
|
307 |
-
end_effect (int): End token index of the effect span.
|
308 |
-
start_signal (int, optional): Start token index of the signal span.
|
309 |
-
end_signal (int, optional): End token index of the signal span.
|
310 |
-
|
311 |
-
Returns:
|
312 |
-
str: The modified text with annotated spans.
|
313 |
-
"""
|
314 |
-
|
315 |
-
# Convert token indices to character indices
|
316 |
-
spans = [
|
317 |
-
(offset_mapping[start_cause][0], offset_mapping[end_cause][1], "<ARG0>", "</ARG0>"),
|
318 |
-
(offset_mapping[start_effect][0], offset_mapping[end_effect][1], "<ARG1>", "</ARG1>")
|
319 |
-
]
|
320 |
-
|
321 |
-
# Include signal tags if available
|
322 |
-
if start_signal is not None and end_signal is not None:
|
323 |
-
spans.append((offset_mapping[start_signal][0], offset_mapping[end_signal][1], "<SIG0>", "</SIG0>"))
|
324 |
-
|
325 |
-
# Sort spans in reverse order based on start index (to avoid shifting issues)
|
326 |
-
spans.sort(reverse=True, key=lambda x: x[0])
|
327 |
-
|
328 |
-
# Insert tags
|
329 |
-
for start, end, open_tag, close_tag in spans:
|
330 |
-
text = text[:start] + open_tag + text[start:end] + close_tag + text[end:]
|
331 |
-
|
332 |
-
return text
|
333 |
-
|
334 |
-
import re
|
335 |
-
|
336 |
-
def add_tags_offset_3(text, start_cause, end_cause, start_effect, end_effect, start_signal, end_signal):
|
337 |
-
"""
|
338 |
-
Inserts tags into the original text based on token offsets, ensuring correct nesting,
|
339 |
-
avoiding empty tags, preventing duplication, and handling punctuation placement.
|
340 |
-
|
341 |
-
Args:
|
342 |
-
text (str): The original input text.
|
343 |
-
offset_mapping (list of tuples): Maps token indices to character spans.
|
344 |
-
start_cause (int): Start token index of the cause span.
|
345 |
-
end_cause (int): End token index of the cause span.
|
346 |
-
start_effect (int): Start token index of the effect span.
|
347 |
-
end_effect (int): End token index of the effect span.
|
348 |
-
start_signal (int, optional): Start token index of the signal span.
|
349 |
-
end_signal (int, optional): End token index of the signal span.
|
350 |
-
|
351 |
-
Returns:
|
352 |
-
str: The modified text with correctly positioned annotated spans.
|
353 |
-
"""
|
354 |
-
|
355 |
-
# Convert token indices to character indices
|
356 |
-
spans = []
|
357 |
-
|
358 |
-
# Function to adjust start position to avoid punctuation issues
|
359 |
-
def adjust_start(text, start):
|
360 |
-
while start < len(text) and text[start] in {',', ' ', '.', ';', ':'}:
|
361 |
-
start += 1 # Move past punctuation
|
362 |
-
return start
|
363 |
-
|
364 |
-
# Ensure valid spans (avoid empty tags)
|
365 |
-
if start_cause is not None and end_cause is not None and start_cause < end_cause:
|
366 |
-
start_cause_char, end_cause_char = offset_mapping[start_cause][0], offset_mapping[end_cause][1]
|
367 |
-
spans.append((start_cause_char, end_cause_char, "<ARG0>", "</ARG0>"))
|
368 |
-
|
369 |
-
if start_effect is not None and end_effect is not None and start_effect < end_effect:
|
370 |
-
start_effect_char, end_effect_char = offset_mapping[start_effect][0], offset_mapping[end_effect][1]
|
371 |
-
start_effect_char = adjust_start(text, start_effect_char) # Skip punctuation
|
372 |
-
spans.append((start_effect_char, end_effect_char, "<ARG1>", "</ARG1>"))
|
373 |
-
|
374 |
-
if start_signal is not None and end_signal is not None and start_signal < end_signal:
|
375 |
-
start_signal_char, end_signal_char = offset_mapping[start_signal][0], offset_mapping[end_signal][1]
|
376 |
-
spans.append((start_signal_char, end_signal_char, "<SIG0>", "</SIG0>"))
|
377 |
-
|
378 |
-
# Sort spans in reverse order based on start index (to avoid shifting issues)
|
379 |
-
spans.sort(reverse=True, key=lambda x: x[0])
|
380 |
-
|
381 |
-
# Insert tags correctly
|
382 |
-
modified_text = text
|
383 |
-
inserted_positions = []
|
384 |
-
|
385 |
-
for start, end, open_tag, close_tag in spans:
|
386 |
-
# Adjust positions based on previous insertions
|
387 |
-
shift = sum(len(tag) for pos, tag in inserted_positions if pos <= start)
|
388 |
-
start += shift
|
389 |
-
end += shift
|
390 |
-
|
391 |
-
# Ensure valid start/end to prevent empty tags
|
392 |
-
if start < end:
|
393 |
-
modified_text = modified_text[:start] + open_tag + modified_text[start:end] + close_tag + modified_text[end:]
|
394 |
-
inserted_positions.append((start, open_tag))
|
395 |
-
inserted_positions.append((end + len(open_tag), close_tag))
|
396 |
-
|
397 |
-
return modified_text
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
tagged_sentence1 = add_tags_offset_3(input_text, start_cause1, end_cause1, start_effect1, end_effect1, start_signal, end_signal)
|
403 |
-
tagged_sentence2 = add_tags_offset_3(input_text, start_cause2, end_cause2, start_effect2, end_effect2, start_signal, end_signal)
|
404 |
-
return tagged_sentence1, tagged_sentence2
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
def mark_text_by_position(original_text, start_idx, end_idx, color):
|
411 |
-
"""Marks text in the original string based on character positions."""
|
412 |
-
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
|
413 |
-
return (
|
414 |
-
original_text[:start_idx]
|
415 |
-
+ f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>"
|
416 |
-
+ original_text[start_idx:end_idx]
|
417 |
-
+ "</mark>"
|
418 |
-
+ original_text[end_idx:]
|
419 |
-
)
|
420 |
-
return original_text # Return unchanged if indices are invalidt # Return unchanged text if no span is found
|
421 |
-
|
422 |
-
def mark_text_by_tokens(tokenizer, tokens, start_idx, end_idx, color):
|
423 |
-
"""Highlights a span in tokenized text using HTML."""
|
424 |
-
highlighted_tokens = copy.deepcopy(tokens) # Avoid modifying original tokens
|
425 |
-
if start_idx is not None and end_idx is not None and start_idx <= end_idx:
|
426 |
-
highlighted_tokens[start_idx] = f"<span style='background-color:{color}; padding:2px; border-radius:4px;'>{highlighted_tokens[start_idx]}"
|
427 |
-
highlighted_tokens[end_idx] = f"{highlighted_tokens[end_idx]}</span>"
|
428 |
-
return tokenizer.convert_tokens_to_string(highlighted_tokens)
|
429 |
-
|
430 |
-
def mark_text_by_word_ids(original_text, token_ids, start_word_id, end_word_id, color):
|
431 |
-
"""Marks words in the original text based on word IDs from tokenized input."""
|
432 |
-
words = original_text.split() # Split text into words
|
433 |
-
if start_word_id is not None and end_word_id is not None and start_word_id <= end_word_id:
|
434 |
-
words[start_word_id] = f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>{words[start_word_id]}"
|
435 |
-
words[end_word_id] = f"{words[end_word_id]}</mark>"
|
436 |
-
|
437 |
-
return " ".join(words)
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
st.title("Causal Relation Extraction")
|
443 |
-
input_text = st.text_area("Enter your text here:", height=300)
|
444 |
-
beam_search = st.radio("Enable Beam Search?", ('No', 'Yes')) == 'Yes'
|
445 |
-
|
446 |
-
if st.button("Add Argument Tags"):
|
447 |
-
if input_text:
|
448 |
-
tagged_sentence1, tagged_sentence2 = extract_arguments(input_text, tokenizer, model, beam_search=True)
|
449 |
-
|
450 |
-
st.write("**Tagged Sentence_1:**")
|
451 |
-
st.write(tagged_sentence1)
|
452 |
-
st.write("**Tagged Sentence_2:**")
|
453 |
-
st.write(tagged_sentence2)
|
454 |
-
else:
|
455 |
-
st.warning("Please enter some text to analyze.")
|
456 |
-
|
457 |
-
|
458 |
-
if st.button("Extract"):
|
459 |
-
if input_text:
|
460 |
-
start_cause_id, end_cause_id, start_effect_id, end_effect_id, start_signal_id, end_signal_id = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
|
461 |
-
|
462 |
-
cause_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_cause_id, end_cause_id, "#FFD700") # Gold for cause
|
463 |
-
effect_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_effect_id, end_effect_id, "#90EE90") # Light green for effect
|
464 |
-
signal_text = mark_text_by_word_ids(input_text, inputs["input_ids"][0], start_signal_id, end_signal_id, "#FF6347") # Tomato red for signal
|
465 |
-
|
466 |
-
st.markdown(f"**Cause:**<br>{cause_text}", unsafe_allow_html=True)
|
467 |
-
st.markdown(f"**Effect:**<br>{effect_text}", unsafe_allow_html=True)
|
468 |
-
st.markdown(f"**Signal:**<br>{signal_text}", unsafe_allow_html=True)
|
469 |
-
else:
|
470 |
-
st.warning("Please enter some text before extracting.")
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
if st.button("Extract1"):
|
476 |
-
if input_text:
|
477 |
-
start_cause1, end_cause1, start_cause2, end_cause2, start_effect1, end_effect1, start_effect2, end_effect2, start_signal, end_signal = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
|
478 |
-
|
479 |
-
# Convert text to tokenized format
|
480 |
-
tokenized_input = tokenizer.tokenize(input_text)
|
481 |
-
|
482 |
-
cause_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause1, end_cause1, "#FFD700") # Gold for cause
|
483 |
-
effect_text1 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect1, end_effect1, "#90EE90") # Light green for effect
|
484 |
-
signal_text = mark_text_by_tokens(tokenizer, tokenized_input, start_signal, end_signal, "#FF6347") # Tomato red for signal
|
485 |
-
|
486 |
-
# Display first relation
|
487 |
-
st.markdown(f"<strong>Relation 1:</strong>", unsafe_allow_html=True)
|
488 |
-
st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True)
|
489 |
-
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
|
490 |
-
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
|
491 |
-
|
492 |
-
# Display second relation if beam search is enabled
|
493 |
-
if beam_search:
|
494 |
-
cause_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_cause2, end_cause2, "#FFD700")
|
495 |
-
effect_text2 = mark_text_by_tokens(tokenizer, tokenized_input, start_effect2, end_effect2, "#90EE90")
|
496 |
-
|
497 |
-
st.markdown(f"<strong>Relation 2:</strong>", unsafe_allow_html=True)
|
498 |
-
st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
|
499 |
-
st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
|
500 |
-
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
|
501 |
-
else:
|
502 |
-
st.warning("Please enter some text before extracting.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|