Spaces:
Running
Running
Rename ST2ModelV2_6.py to modeling_st2.py
Browse files- ST2ModelV2_6.py → modeling_st2.py +256 -67
ST2ModelV2_6.py → modeling_st2.py
RENAMED
@@ -7,79 +7,199 @@ from transformers import (
|
|
7 |
AutoConfig,
|
8 |
AutoModelForSequenceClassification
|
9 |
)
|
10 |
-
|
11 |
-
from safetensors.torch import
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class ST2ModelV2(nn.Module):
|
15 |
-
def __init__(self, args
|
16 |
super(ST2ModelV2, self).__init__()
|
17 |
self.args = args
|
18 |
-
self.config = config
|
19 |
|
20 |
-
|
21 |
-
self.model = AutoModel.from_pretrained(
|
|
|
22 |
|
23 |
-
# Define classifier layers
|
24 |
classifier_dropout = self.args.dropout
|
25 |
self.dropout = nn.Dropout(classifier_dropout)
|
26 |
self.classifier = nn.Linear(self.config.hidden_size, 6)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
29 |
self.signal_classifier = nn.Linear(self.config.hidden_size, 2)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
def forward(
|
34 |
self,
|
35 |
-
input_ids=None,
|
36 |
-
attention_mask=None,
|
37 |
-
token_type_ids=None,
|
38 |
-
position_ids=None,
|
39 |
-
signal_bias_mask=None,
|
40 |
-
head_mask=None,
|
41 |
-
inputs_embeds=None,
|
42 |
-
start_positions=None,
|
43 |
-
end_positions=None,
|
44 |
-
output_attentions=None,
|
45 |
-
output_hidden_states=None,
|
46 |
-
return_dict=None,
|
47 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
sequence_output = outputs[0]
|
|
|
|
|
67 |
|
68 |
sequence_output = self.dropout(sequence_output)
|
69 |
-
logits = self.classifier(sequence_output)
|
70 |
-
|
71 |
-
# Split logits
|
72 |
start_arg0_logits, end_arg0_logits, start_arg1_logits, end_arg1_logits, start_sig_logits, end_sig_logits = logits.split(1, dim=-1)
|
73 |
-
start_arg0_logits = start_arg0_logits.squeeze(-1)
|
74 |
-
end_arg0_logits = end_arg0_logits.squeeze(-1)
|
75 |
-
start_arg1_logits = start_arg1_logits.squeeze(-1)
|
76 |
-
end_arg1_logits = end_arg1_logits.squeeze(-1)
|
77 |
-
start_sig_logits = start_sig_logits.squeeze(-1)
|
78 |
-
end_sig_logits = end_sig_logits.squeeze(-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
signal_classification_logits = None
|
81 |
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
82 |
signal_classification_logits = self.signal_classifier(sequence_output[:, 0, :])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
return {
|
85 |
'start_arg0_logits': start_arg0_logits,
|
@@ -88,27 +208,71 @@ class ST2ModelV2(nn.Module):
|
|
88 |
'end_arg1_logits': end_arg1_logits,
|
89 |
'start_sig_logits': start_sig_logits,
|
90 |
'end_sig_logits': end_sig_logits,
|
91 |
-
'signal_classification_logits': signal_classification_logits
|
|
|
|
|
|
|
|
|
|
|
92 |
}
|
93 |
|
94 |
-
|
95 |
-
def
|
96 |
-
"""
|
97 |
-
Custom from_pretrained method to load the model from Hugging Face and initialize
|
98 |
-
any additional components such as the classifier.
|
99 |
-
"""
|
100 |
-
# Load the configuration
|
101 |
-
config = AutoConfig.from_pretrained(model_name) if config is None else config
|
102 |
-
|
103 |
-
# Instantiate the model
|
104 |
-
model = cls(args, config)
|
105 |
-
|
106 |
-
# Load the pre-trained weights into the model
|
107 |
-
model.model = AutoModel.from_pretrained(model_name, config=config, **kwargs, use_safetensors=False)
|
108 |
|
|
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def position_selector(
|
113 |
self,
|
114 |
start_cause_logits,
|
@@ -117,7 +281,7 @@ class ST2ModelV2(nn.Module):
|
|
117 |
end_effect_logits,
|
118 |
attention_mask,
|
119 |
word_ids,
|
120 |
-
|
121 |
# basic post processing (removing logits from [CLS], [SEP], [PAD])
|
122 |
start_cause_logits -= (1 - attention_mask) * 1e4
|
123 |
end_cause_logits -= (1 - attention_mask) * 1e4
|
@@ -190,9 +354,27 @@ class ST2ModelV2(nn.Module):
|
|
190 |
start_effect_logits,
|
191 |
end_cause_logits,
|
192 |
end_effect_logits,
|
|
|
|
|
193 |
topk=5
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
start_cause_logits = torch.log(torch.softmax(start_cause_logits, dim=-1))
|
197 |
end_cause_logits = torch.log(torch.softmax(end_cause_logits, dim=-1))
|
198 |
start_effect_logits = torch.log(torch.softmax(start_effect_logits, dim=-1))
|
@@ -200,12 +382,19 @@ class ST2ModelV2(nn.Module):
|
|
200 |
|
201 |
scores = dict()
|
202 |
for i in range(len(end_cause_logits)):
|
203 |
-
|
|
|
204 |
for j in range(i + 1, len(start_effect_logits)):
|
|
|
|
|
205 |
scores[str((i, j, "before"))] = end_cause_logits[i].item() + start_effect_logits[j].item()
|
206 |
|
207 |
for i in range(len(end_effect_logits)):
|
|
|
|
|
208 |
for j in range(i + 1, len(start_cause_logits)):
|
|
|
|
|
209 |
scores[str((i, j, "after"))] = start_cause_logits[j].item() + end_effect_logits[i].item()
|
210 |
|
211 |
|
|
|
7 |
AutoConfig,
|
8 |
AutoModelForSequenceClassification
|
9 |
)
|
10 |
+
import os
|
11 |
+
from safetensors.torch import save_file
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
class SignalDetector(nn.Module):
|
16 |
+
def __init__(self, model_and_tokenizer_path) -> None:
|
17 |
+
super().__init__()
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_and_tokenizer_path)
|
19 |
+
self.signal_detector = AutoModelForSequenceClassification.from_pretrained(model_and_tokenizer_path)
|
20 |
+
self.signal_detector.eval()
|
21 |
+
self.signal_detector.cuda()
|
22 |
+
|
23 |
+
@torch.no_grad()
|
24 |
+
def predict(self, text: str) -> int:
|
25 |
+
input_ids = self.tokenizer.encode(text)
|
26 |
+
input_ids = torch.tensor([input_ids]).cuda()
|
27 |
+
outputs = self.signal_detector(input_ids)
|
28 |
+
return outputs[0].argmax().item()
|
29 |
+
|
30 |
+
|
31 |
class ST2ModelV2(nn.Module):
|
32 |
+
def __init__(self, args):
|
33 |
super(ST2ModelV2, self).__init__()
|
34 |
self.args = args
|
|
|
35 |
|
36 |
+
self.config = AutoConfig.from_pretrained(args.model_name_or_path)
|
37 |
+
self.model = AutoModel.from_pretrained(args.model_name_or_path)
|
38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
|
39 |
|
|
|
40 |
classifier_dropout = self.args.dropout
|
41 |
self.dropout = nn.Dropout(classifier_dropout)
|
42 |
self.classifier = nn.Linear(self.config.hidden_size, 6)
|
43 |
|
44 |
+
if args.mlp:
|
45 |
+
self.classifier = nn.Sequential(
|
46 |
+
nn.Linear(self.config.hidden_size, self.config.hidden_size),
|
47 |
+
nn.ReLU(),
|
48 |
+
nn.Linear(self.config.hidden_size, 6),
|
49 |
+
nn.Tanh(),
|
50 |
+
nn.Linear(6, 6),
|
51 |
+
)
|
52 |
+
|
53 |
+
if args.add_signal_bias:
|
54 |
+
self.signal_phrases_layer = nn.Parameter(
|
55 |
+
torch.normal(
|
56 |
+
mean=self.model.embeddings.word_embeddings.weight.data.mean(),
|
57 |
+
std=self.model.embeddings.word_embeddings.weight.data.std(),
|
58 |
+
size=(1, self.config.hidden_size),
|
59 |
+
)
|
60 |
+
)
|
61 |
+
|
62 |
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
63 |
self.signal_classifier = nn.Linear(self.config.hidden_size, 2)
|
64 |
|
|
|
|
|
65 |
def forward(
|
66 |
self,
|
67 |
+
input_ids: Optional[torch.Tensor] = None,
|
68 |
+
attention_mask: Optional[torch.Tensor] = None,
|
69 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
70 |
+
position_ids: Optional[torch.Tensor] = None,
|
71 |
+
signal_bias_mask: Optional[torch.Tensor] = None,
|
72 |
+
head_mask: Optional[torch.Tensor] = None,
|
73 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
74 |
+
start_positions: Optional[torch.Tensor] = None, # [batch_size, 3]
|
75 |
+
end_positions: Optional[torch.Tensor] = None, # [batch_size, 3]
|
76 |
+
output_attentions: Optional[bool] = None,
|
77 |
+
output_hidden_states: Optional[bool] = None,
|
78 |
+
return_dict: Optional[bool] = None,
|
79 |
):
|
80 |
+
r"""
|
81 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
82 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
83 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
84 |
+
are not taken into account for computing the loss.
|
85 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
86 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
87 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
88 |
+
are not taken into account for computing the loss.
|
89 |
+
"""
|
90 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
91 |
|
92 |
+
if signal_bias_mask is not None and not self.args.signal_bias_on_top_of_lm:
|
93 |
+
inputs_embeds = self.signal_phrases_bias(input_ids, signal_bias_mask)
|
94 |
+
|
95 |
+
outputs = self.model(
|
96 |
+
# input_ids,
|
97 |
+
attention_mask=attention_mask,
|
98 |
+
token_type_ids=token_type_ids,
|
99 |
+
position_ids=position_ids,
|
100 |
+
head_mask=head_mask,
|
101 |
+
inputs_embeds=inputs_embeds,
|
102 |
+
output_attentions=output_attentions,
|
103 |
+
output_hidden_states=output_hidden_states,
|
104 |
+
return_dict=return_dict,
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
if self.args.model_name_or_path in ['facebook/bart-large', 'facebook/bart-base', 'facebook/bart-large-cnn']:
|
108 |
+
outputs = self.model(
|
109 |
+
input_ids,
|
110 |
+
attention_mask=attention_mask,
|
111 |
+
head_mask=head_mask,
|
112 |
+
inputs_embeds=inputs_embeds,
|
113 |
+
output_attentions=output_attentions,
|
114 |
+
output_hidden_states=output_hidden_states,
|
115 |
+
return_dict=return_dict,
|
116 |
+
)
|
117 |
+
elif self.args.model_name_or_path in ['microsoft/deberta-base']:
|
118 |
+
outputs = self.model(
|
119 |
+
input_ids,
|
120 |
+
attention_mask=attention_mask,
|
121 |
+
token_type_ids=token_type_ids,
|
122 |
+
position_ids=position_ids,
|
123 |
+
inputs_embeds=inputs_embeds,
|
124 |
+
output_attentions=output_attentions,
|
125 |
+
output_hidden_states=output_hidden_states,
|
126 |
+
return_dict=return_dict,
|
127 |
+
)
|
128 |
+
|
129 |
+
else:
|
130 |
+
outputs = self.model(
|
131 |
+
input_ids,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
token_type_ids=token_type_ids,
|
134 |
+
position_ids=position_ids,
|
135 |
+
head_mask=head_mask,
|
136 |
+
inputs_embeds=inputs_embeds,
|
137 |
+
output_attentions=output_attentions,
|
138 |
+
output_hidden_states=output_hidden_states,
|
139 |
+
return_dict=return_dict,
|
140 |
+
)
|
141 |
|
142 |
sequence_output = outputs[0]
|
143 |
+
if signal_bias_mask is not None and self.args.signal_bias_on_top_of_lm:
|
144 |
+
sequence_output[signal_bias_mask == 1] += self.signal_phrases_layer
|
145 |
|
146 |
sequence_output = self.dropout(sequence_output)
|
147 |
+
logits = self.classifier(sequence_output) # [batch_size, max_seq_length, 6]
|
|
|
|
|
148 |
start_arg0_logits, end_arg0_logits, start_arg1_logits, end_arg1_logits, start_sig_logits, end_sig_logits = logits.split(1, dim=-1)
|
149 |
+
start_arg0_logits = start_arg0_logits.squeeze(-1).contiguous()
|
150 |
+
end_arg0_logits = end_arg0_logits.squeeze(-1).contiguous()
|
151 |
+
start_arg1_logits = start_arg1_logits.squeeze(-1).contiguous()
|
152 |
+
end_arg1_logits = end_arg1_logits.squeeze(-1).contiguous()
|
153 |
+
start_sig_logits = start_sig_logits.squeeze(-1).contiguous()
|
154 |
+
end_sig_logits = end_sig_logits.squeeze(-1).contiguous()
|
155 |
+
|
156 |
+
# start_arg0_logits -= (1 - attention_mask) * 1e4
|
157 |
+
# end_arg0_logits -= (1 - attention_mask) * 1e4
|
158 |
+
# start_arg1_logits -= (1 - attention_mask) * 1e4
|
159 |
+
# end_arg1_logits -= (1 - attention_mask) * 1e4
|
160 |
+
|
161 |
+
# start_arg0_logits[:, 0] = -1e4
|
162 |
+
# end_arg0_logits[:, 0] = -1e4
|
163 |
+
# start_arg1_logits[:, 0] = -1e4
|
164 |
+
# end_arg1_logits[:, 0] = -1e4
|
165 |
|
166 |
signal_classification_logits = None
|
167 |
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
168 |
signal_classification_logits = self.signal_classifier(sequence_output[:, 0, :])
|
169 |
+
# start_logits = start_logits.squeeze(-1).contiguous()
|
170 |
+
# end_logits = end_logits.squeeze(-1).contiguous()
|
171 |
+
|
172 |
+
arg0_loss = None
|
173 |
+
arg1_loss = None
|
174 |
+
sig_loss = None
|
175 |
+
total_loss = None
|
176 |
+
signal_classification_loss = None
|
177 |
+
if start_positions is not None and end_positions is not None:
|
178 |
+
loss_fct = nn.CrossEntropyLoss()
|
179 |
+
|
180 |
+
start_arg0_loss = loss_fct(start_arg0_logits, start_positions[:, 0])
|
181 |
+
end_arg0_loss = loss_fct(end_arg0_logits, end_positions[:, 0])
|
182 |
+
arg0_loss = (start_arg0_loss + end_arg0_loss) / 2
|
183 |
+
|
184 |
+
start_arg1_loss = loss_fct(start_arg1_logits, start_positions[:, 1])
|
185 |
+
end_arg1_loss = loss_fct(end_arg1_logits, end_positions[:, 1])
|
186 |
+
arg1_loss = (start_arg1_loss + end_arg1_loss) / 2
|
187 |
+
|
188 |
+
# sig_loss = 0.
|
189 |
+
start_sig_loss = loss_fct(start_sig_logits, start_positions[:, 2])
|
190 |
+
end_sig_loss = loss_fct(end_sig_logits, end_positions[:, 2])
|
191 |
+
sig_loss = (start_sig_loss + end_sig_loss) / 2
|
192 |
+
|
193 |
+
if sig_loss.isnan():
|
194 |
+
sig_loss = 0.
|
195 |
+
|
196 |
+
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
197 |
+
signal_classification_labels = end_positions[:, 2] != -100
|
198 |
+
signal_classification_loss = loss_fct(signal_classification_logits, signal_classification_labels.long())
|
199 |
+
total_loss = (arg0_loss + arg1_loss + sig_loss + signal_classification_loss) / 4
|
200 |
+
else:
|
201 |
+
total_loss = (arg0_loss + arg1_loss + sig_loss) / 3
|
202 |
+
|
203 |
|
204 |
return {
|
205 |
'start_arg0_logits': start_arg0_logits,
|
|
|
208 |
'end_arg1_logits': end_arg1_logits,
|
209 |
'start_sig_logits': start_sig_logits,
|
210 |
'end_sig_logits': end_sig_logits,
|
211 |
+
'signal_classification_logits': signal_classification_logits,
|
212 |
+
'arg0_loss': arg0_loss,
|
213 |
+
'arg1_loss': arg1_loss,
|
214 |
+
'sig_loss': sig_loss,
|
215 |
+
'signal_classification_loss': signal_classification_loss,
|
216 |
+
'loss': total_loss,
|
217 |
}
|
218 |
|
219 |
+
"""
|
220 |
+
def save_pretrained(self, save_directory):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
#Save model state dict as safetensor, configuration, and tokenizer files.
|
223 |
|
224 |
+
# Ensure the directory exists
|
225 |
+
os.makedirs(save_directory, exist_ok=True)
|
226 |
+
|
227 |
+
# Save model state dict as safetensor (use torch.save for PyTorch model)
|
228 |
+
model_path = os.path.join(save_directory, "model.safetensor")
|
229 |
+
save_file(self.state_dict(), model_path)
|
230 |
+
|
231 |
+
# Save config if available
|
232 |
+
config_save_path = os.path.join(save_directory, 'config.json')
|
233 |
+
self.config.to_json_file(config_save_path)
|
234 |
|
235 |
+
|
236 |
+
# Save tokenizer
|
237 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
238 |
+
tokenizer_save_path = os.path.join(save_directory, 'tokenizer')
|
239 |
+
self.tokenizer.save_pretrained(tokenizer_save_path)
|
240 |
+
"""
|
241 |
+
|
242 |
+
|
243 |
+
def save_pretrained(self, save_directory):
|
244 |
+
"""
|
245 |
+
Save model state dict as safetensor, PyTorch .bin format, configuration, and tokenizer files.
|
246 |
+
"""
|
247 |
+
# Ensure the directory exists
|
248 |
+
os.makedirs(save_directory, exist_ok=True)
|
249 |
+
|
250 |
+
# Save model state dict as safetensor
|
251 |
+
model_path_safetensor = os.path.join(save_directory, "model.safetensors")
|
252 |
+
save_file(self.state_dict(), model_path_safetensor) # Save as .safetensors
|
253 |
+
|
254 |
+
# Save model state dict as PyTorch .bin (traditional format)
|
255 |
+
model_path_bin = os.path.join(save_directory, "pytorch_model.bin")
|
256 |
+
torch.save(self.state_dict(), model_path_bin) # Save as .bin using PyTorch's torch.save()
|
257 |
+
|
258 |
+
# Save config if available
|
259 |
+
config_save_path = os.path.join(save_directory, 'config.json')
|
260 |
+
self.config.to_json_file(config_save_path)
|
261 |
+
|
262 |
+
"""
|
263 |
+
# Save tokenizer if it exists
|
264 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
265 |
+
tokenizer_save_path = os.path.join(save_directory, 'tokenizer')
|
266 |
+
self.tokenizer.save_pretrained(tokenizer_save_path)
|
267 |
+
"""
|
268 |
+
|
269 |
+
|
270 |
+
def signal_phrases_bias(self, input_ids, signal_bias_mask):
|
271 |
+
inputs_embeds = self.model.get_input_embeddings()(input_ids)
|
272 |
+
inputs_embeds[signal_bias_mask == 1] += self.signal_phrases_layer # self.signal_phrases_layer(inputs_embeds[signal_bias_mask == 1])
|
273 |
+
|
274 |
+
return inputs_embeds
|
275 |
+
|
276 |
def position_selector(
|
277 |
self,
|
278 |
start_cause_logits,
|
|
|
281 |
end_effect_logits,
|
282 |
attention_mask,
|
283 |
word_ids,
|
284 |
+
):
|
285 |
# basic post processing (removing logits from [CLS], [SEP], [PAD])
|
286 |
start_cause_logits -= (1 - attention_mask) * 1e4
|
287 |
end_cause_logits -= (1 - attention_mask) * 1e4
|
|
|
354 |
start_effect_logits,
|
355 |
end_cause_logits,
|
356 |
end_effect_logits,
|
357 |
+
attention_mask,
|
358 |
+
word_ids,
|
359 |
topk=5
|
360 |
+
):
|
361 |
+
# basic post processing (removing logits from [CLS], [SEP], [PAD])
|
362 |
+
|
363 |
+
start_cause_logits -= (1 - attention_mask) * 1e4
|
364 |
+
end_cause_logits -= (1 - attention_mask) * 1e4
|
365 |
+
start_effect_logits -= (1 - attention_mask) * 1e4
|
366 |
+
end_effect_logits -= (1 - attention_mask) * 1e4
|
367 |
+
|
368 |
+
start_cause_logits[0] = -1e4
|
369 |
+
end_cause_logits[0] = -1e4
|
370 |
+
start_effect_logits[0] = -1e4
|
371 |
+
end_effect_logits[0] = -1e4
|
372 |
+
|
373 |
+
start_cause_logits[len(word_ids) - 1] = -1e4
|
374 |
+
end_cause_logits[len(word_ids) - 1] = -1e4
|
375 |
+
start_effect_logits[len(word_ids) - 1] = -1e4
|
376 |
+
end_effect_logits[len(word_ids) - 1] = -1e4
|
377 |
+
|
378 |
start_cause_logits = torch.log(torch.softmax(start_cause_logits, dim=-1))
|
379 |
end_cause_logits = torch.log(torch.softmax(end_cause_logits, dim=-1))
|
380 |
start_effect_logits = torch.log(torch.softmax(start_effect_logits, dim=-1))
|
|
|
382 |
|
383 |
scores = dict()
|
384 |
for i in range(len(end_cause_logits)):
|
385 |
+
if attention_mask[i] == 0:
|
386 |
+
break
|
387 |
for j in range(i + 1, len(start_effect_logits)):
|
388 |
+
if attention_mask[j] == 0:
|
389 |
+
break
|
390 |
scores[str((i, j, "before"))] = end_cause_logits[i].item() + start_effect_logits[j].item()
|
391 |
|
392 |
for i in range(len(end_effect_logits)):
|
393 |
+
if attention_mask[i] == 0:
|
394 |
+
break
|
395 |
for j in range(i + 1, len(start_cause_logits)):
|
396 |
+
if attention_mask[j] == 0:
|
397 |
+
break
|
398 |
scores[str((i, j, "after"))] = start_cause_logits[j].item() + end_effect_logits[i].item()
|
399 |
|
400 |
|