Spaces:
Running
Running
Rename app_7.py to app_8.py
Browse files- app_7.py → app_8.py +67 -11
app_7.py → app_8.py
RENAMED
@@ -88,7 +88,7 @@ def extract_arguments(text, tokenizer, model, beam_search=True):
|
|
88 |
|
89 |
# Beam Search for position selection
|
90 |
if beam_search:
|
91 |
-
indices1, indices2,
|
92 |
start_cause_logits=start_cause_logits,
|
93 |
end_cause_logits=end_cause_logits,
|
94 |
start_effect_logits=start_effect_logits,
|
@@ -178,19 +178,63 @@ def extract_arguments(text, tokenizer, model, beam_search=True):
|
|
178 |
else:
|
179 |
cause_text2 = None
|
180 |
effect_text2 = None
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
st.title("Causal Relation Extraction")
|
184 |
input_text = st.text_area("Enter your text here:", height=300)
|
185 |
-
beam_search = st.radio("Enable Position Selector & Beam Search?", ('
|
186 |
|
187 |
|
188 |
if st.button("Extract"):
|
189 |
if input_text:
|
190 |
-
cause_text1, effect_text1, signal_text, cause_text2, effect_text2 = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
|
191 |
|
192 |
# Display first relation
|
193 |
-
st.
|
194 |
|
195 |
if cause_text1 is None or effect_text1 is None:
|
196 |
st.write("The prediction is not correct for at least one span: The position of the predicted end token comes before the position of the start token.")
|
@@ -199,14 +243,26 @@ if st.button("Extract"):
|
|
199 |
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
|
200 |
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
|
211 |
else:
|
212 |
st.warning("Please enter some text before extracting.")
|
|
|
88 |
|
89 |
# Beam Search for position selection
|
90 |
if beam_search:
|
91 |
+
indices1, indices2, score1, score2, topk_scores = model.beam_search_position_selector(
|
92 |
start_cause_logits=start_cause_logits,
|
93 |
end_cause_logits=end_cause_logits,
|
94 |
start_effect_logits=start_effect_logits,
|
|
|
178 |
else:
|
179 |
cause_text2 = None
|
180 |
effect_text2 = None
|
181 |
+
|
182 |
+
if beam_search:
|
183 |
+
start_cause_probs = torch.softmax(start_cause_logits, dim=-1)
|
184 |
+
end_cause_probs = torch.softmax(end_cause_logits, dim=-1)
|
185 |
+
start_effect_probs = torch.softmax(start_effect_logits, dim=-1)
|
186 |
+
end_effect_probs = torch.softmax(end_effect_logits, dim=-1)
|
187 |
+
|
188 |
+
best_start_cause_score = start_cause_probs[start_cause1].item()
|
189 |
+
best_end_cause_score = end_cause_probs[end_cause1].item()
|
190 |
+
best_start_effect_score = start_effect_probs[start_effect1].item()
|
191 |
+
best_end_effect_score = end_effect_probs[end_effect1].item()
|
192 |
+
|
193 |
+
second_start_cause_score = start_cause_probs[start_cause2].item()
|
194 |
+
second_end_cause_score = end_cause_probs[end_cause2].item()
|
195 |
+
second_start_effect_score = start_effect_probs[start_effect2].item()
|
196 |
+
second_end_effect_score = end_effect_probs[end_effect2].item()
|
197 |
+
|
198 |
+
best_scores = {
|
199 |
+
"Start Cause Score": round(best_start_cause_score, 4),
|
200 |
+
"End Cause Score": round(best_end_cause_score, 4),
|
201 |
+
"Start Effect Score": round(best_start_effect_score, 4),
|
202 |
+
"End Effect Score": round(best_end_effect_score, 4),
|
203 |
+
"Total Best Score [sum of log-probability scores]": round(score1, 4)
|
204 |
+
}
|
205 |
+
|
206 |
+
second_best_scores = {
|
207 |
+
"Start Cause Score": round(second_start_cause_score, 4),
|
208 |
+
"End Cause Score": round(second_end_cause_score, 4),
|
209 |
+
"Start Effect Score": round(second_start_effect_score, 4),
|
210 |
+
"End Effect Score": round(second_end_effect_score, 4),
|
211 |
+
"Total Second Best Score [sum of log-probability scores]": round(score2, 4)
|
212 |
+
}
|
213 |
+
|
214 |
+
top5_scores = sorted(topk_scores.items(), key=lambda x: x[1], reverse=True)[:5]
|
215 |
+
top5_scores = [(k, round(v, 4)) for k, v in top5_scores]
|
216 |
+
|
217 |
+
|
218 |
+
else:
|
219 |
+
best_scores = {}
|
220 |
+
second_best_scores = {}
|
221 |
+
top5_scores = {}
|
222 |
+
|
223 |
+
|
224 |
+
return cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores
|
225 |
+
|
226 |
|
227 |
st.title("Causal Relation Extraction")
|
228 |
input_text = st.text_area("Enter your text here:", height=300)
|
229 |
+
beam_search = st.radio("Enable Position Selector & Beam Search?", ('Yes', 'No')) == 'Yes'
|
230 |
|
231 |
|
232 |
if st.button("Extract"):
|
233 |
if input_text:
|
234 |
+
cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores = extract_arguments(input_text, tokenizer, model, beam_search=beam_search)
|
235 |
|
236 |
# Display first relation
|
237 |
+
st.write("## Relation 1:")
|
238 |
|
239 |
if cause_text1 is None or effect_text1 is None:
|
240 |
st.write("The prediction is not correct for at least one span: The position of the predicted end token comes before the position of the start token.")
|
|
|
243 |
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True)
|
244 |
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
|
245 |
|
246 |
+
if beam_search:
|
247 |
+
|
248 |
+
# Display dictionary in Streamlit
|
249 |
+
st.markdown(f"<strong>Best Tuple Scores:</strong>", unsafe_allow_html=True)
|
250 |
+
st.json(best_scores)
|
251 |
+
|
252 |
|
253 |
+
# Display second relation if beam search is enabled
|
254 |
+
st.write("## Relation 2:")
|
255 |
+
st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True)
|
256 |
+
st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True)
|
257 |
+
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True)
|
258 |
+
|
259 |
+
st.markdown(f"<strong>Second best Tuple Scores:</strong>", unsafe_allow_html=True)
|
260 |
+
st.json(second_best_scores)
|
261 |
|
262 |
+
st.markdown(f"<strong>top5_scores [sum of log-probability scores]:</strong>", unsafe_allow_html=True)
|
263 |
+
# Unpack top 5 scores
|
264 |
+
# first, second, third, fourth, fifth = top_5_scores
|
265 |
+
st.json(top5_scores)
|
266 |
|
267 |
else:
|
268 |
st.warning("Please enter some text before extracting.")
|