Spaces:
Running
Running
Update modeling_st2.py
Browse files- modeling_st2.py +18 -160
modeling_st2.py
CHANGED
@@ -41,23 +41,7 @@ class ST2ModelV2(nn.Module):
|
|
41 |
self.dropout = nn.Dropout(classifier_dropout)
|
42 |
self.classifier = nn.Linear(self.config.hidden_size, 6)
|
43 |
|
44 |
-
|
45 |
-
self.classifier = nn.Sequential(
|
46 |
-
nn.Linear(self.config.hidden_size, self.config.hidden_size),
|
47 |
-
nn.ReLU(),
|
48 |
-
nn.Linear(self.config.hidden_size, 6),
|
49 |
-
nn.Tanh(),
|
50 |
-
nn.Linear(6, 6),
|
51 |
-
)
|
52 |
-
|
53 |
-
if args.add_signal_bias:
|
54 |
-
self.signal_phrases_layer = nn.Parameter(
|
55 |
-
torch.normal(
|
56 |
-
mean=self.model.embeddings.word_embeddings.weight.data.mean(),
|
57 |
-
std=self.model.embeddings.word_embeddings.weight.data.std(),
|
58 |
-
size=(1, self.config.hidden_size),
|
59 |
-
)
|
60 |
-
)
|
61 |
|
62 |
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
63 |
self.signal_classifier = nn.Linear(self.config.hidden_size, 2)
|
@@ -89,37 +73,22 @@ class ST2ModelV2(nn.Module):
|
|
89 |
"""
|
90 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
91 |
|
92 |
-
|
93 |
-
inputs_embeds = self.signal_phrases_bias(input_ids, signal_bias_mask)
|
94 |
-
|
95 |
-
outputs = self.model(
|
96 |
-
# input_ids,
|
97 |
-
attention_mask=attention_mask,
|
98 |
-
token_type_ids=token_type_ids,
|
99 |
-
position_ids=position_ids,
|
100 |
-
head_mask=head_mask,
|
101 |
-
inputs_embeds=inputs_embeds,
|
102 |
-
output_attentions=output_attentions,
|
103 |
-
output_hidden_states=output_hidden_states,
|
104 |
-
return_dict=return_dict,
|
105 |
-
)
|
106 |
-
else:
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
sequence_output = outputs[0]
|
121 |
-
|
122 |
-
sequence_output[signal_bias_mask == 1] += self.signal_phrases_layer
|
123 |
|
124 |
sequence_output = self.dropout(sequence_output)
|
125 |
logits = self.classifier(sequence_output) # [batch_size, max_seq_length, 6]
|
@@ -147,36 +116,7 @@ class ST2ModelV2(nn.Module):
|
|
147 |
# start_logits = start_logits.squeeze(-1).contiguous()
|
148 |
# end_logits = end_logits.squeeze(-1).contiguous()
|
149 |
|
150 |
-
|
151 |
-
arg1_loss = None
|
152 |
-
sig_loss = None
|
153 |
-
total_loss = None
|
154 |
-
signal_classification_loss = None
|
155 |
-
if start_positions is not None and end_positions is not None:
|
156 |
-
loss_fct = nn.CrossEntropyLoss()
|
157 |
-
|
158 |
-
start_arg0_loss = loss_fct(start_arg0_logits, start_positions[:, 0])
|
159 |
-
end_arg0_loss = loss_fct(end_arg0_logits, end_positions[:, 0])
|
160 |
-
arg0_loss = (start_arg0_loss + end_arg0_loss) / 2
|
161 |
-
|
162 |
-
start_arg1_loss = loss_fct(start_arg1_logits, start_positions[:, 1])
|
163 |
-
end_arg1_loss = loss_fct(end_arg1_logits, end_positions[:, 1])
|
164 |
-
arg1_loss = (start_arg1_loss + end_arg1_loss) / 2
|
165 |
-
|
166 |
-
# sig_loss = 0.
|
167 |
-
start_sig_loss = loss_fct(start_sig_logits, start_positions[:, 2])
|
168 |
-
end_sig_loss = loss_fct(end_sig_logits, end_positions[:, 2])
|
169 |
-
sig_loss = (start_sig_loss + end_sig_loss) / 2
|
170 |
-
|
171 |
-
if sig_loss.isnan():
|
172 |
-
sig_loss = 0.
|
173 |
-
|
174 |
-
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
175 |
-
signal_classification_labels = end_positions[:, 2] != -100
|
176 |
-
signal_classification_loss = loss_fct(signal_classification_logits, signal_classification_labels.long())
|
177 |
-
total_loss = (arg0_loss + arg1_loss + sig_loss + signal_classification_loss) / 4
|
178 |
-
else:
|
179 |
-
total_loss = (arg0_loss + arg1_loss + sig_loss) / 3
|
180 |
|
181 |
|
182 |
return {
|
@@ -187,69 +127,10 @@ class ST2ModelV2(nn.Module):
|
|
187 |
'start_sig_logits': start_sig_logits,
|
188 |
'end_sig_logits': end_sig_logits,
|
189 |
'signal_classification_logits': signal_classification_logits,
|
190 |
-
|
191 |
-
'arg1_loss': arg1_loss,
|
192 |
-
'sig_loss': sig_loss,
|
193 |
-
'signal_classification_loss': signal_classification_loss,
|
194 |
-
'loss': total_loss,
|
195 |
}
|
196 |
|
197 |
-
|
198 |
-
def save_pretrained(self, save_directory):
|
199 |
-
|
200 |
-
#Save model state dict as safetensor, configuration, and tokenizer files.
|
201 |
-
|
202 |
-
# Ensure the directory exists
|
203 |
-
os.makedirs(save_directory, exist_ok=True)
|
204 |
-
|
205 |
-
# Save model state dict as safetensor (use torch.save for PyTorch model)
|
206 |
-
model_path = os.path.join(save_directory, "model.safetensor")
|
207 |
-
save_file(self.state_dict(), model_path)
|
208 |
-
|
209 |
-
# Save config if available
|
210 |
-
config_save_path = os.path.join(save_directory, 'config.json')
|
211 |
-
self.config.to_json_file(config_save_path)
|
212 |
-
|
213 |
-
|
214 |
-
# Save tokenizer
|
215 |
-
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
216 |
-
tokenizer_save_path = os.path.join(save_directory, 'tokenizer')
|
217 |
-
self.tokenizer.save_pretrained(tokenizer_save_path)
|
218 |
-
"""
|
219 |
-
|
220 |
-
|
221 |
-
def save_pretrained(self, save_directory):
|
222 |
-
"""
|
223 |
-
Save model state dict as safetensor, PyTorch .bin format, configuration, and tokenizer files.
|
224 |
-
"""
|
225 |
-
# Ensure the directory exists
|
226 |
-
os.makedirs(save_directory, exist_ok=True)
|
227 |
-
|
228 |
-
# Save model state dict as safetensor
|
229 |
-
model_path_safetensor = os.path.join(save_directory, "model.safetensors")
|
230 |
-
save_file(self.state_dict(), model_path_safetensor) # Save as .safetensors
|
231 |
-
|
232 |
-
# Save model state dict as PyTorch .bin (traditional format)
|
233 |
-
model_path_bin = os.path.join(save_directory, "pytorch_model.bin")
|
234 |
-
torch.save(self.state_dict(), model_path_bin) # Save as .bin using PyTorch's torch.save()
|
235 |
-
|
236 |
-
# Save config if available
|
237 |
-
config_save_path = os.path.join(save_directory, 'config.json')
|
238 |
-
self.config.to_json_file(config_save_path)
|
239 |
-
|
240 |
-
"""
|
241 |
-
# Save tokenizer if it exists
|
242 |
-
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
243 |
-
tokenizer_save_path = os.path.join(save_directory, 'tokenizer')
|
244 |
-
self.tokenizer.save_pretrained(tokenizer_save_path)
|
245 |
-
"""
|
246 |
-
|
247 |
-
|
248 |
-
def signal_phrases_bias(self, input_ids, signal_bias_mask):
|
249 |
-
inputs_embeds = self.model.get_input_embeddings()(input_ids)
|
250 |
-
inputs_embeds[signal_bias_mask == 1] += self.signal_phrases_layer # self.signal_phrases_layer(inputs_embeds[signal_bias_mask == 1])
|
251 |
-
|
252 |
-
return inputs_embeds
|
253 |
|
254 |
def position_selector(
|
255 |
self,
|
@@ -332,27 +213,11 @@ class ST2ModelV2(nn.Module):
|
|
332 |
start_effect_logits,
|
333 |
end_cause_logits,
|
334 |
end_effect_logits,
|
335 |
-
attention_mask,
|
336 |
word_ids,
|
337 |
topk=5
|
338 |
):
|
339 |
# basic post processing (removing logits from [CLS], [SEP], [PAD])
|
340 |
|
341 |
-
start_cause_logits -= (1 - attention_mask) * 1e4
|
342 |
-
end_cause_logits -= (1 - attention_mask) * 1e4
|
343 |
-
start_effect_logits -= (1 - attention_mask) * 1e4
|
344 |
-
end_effect_logits -= (1 - attention_mask) * 1e4
|
345 |
-
|
346 |
-
start_cause_logits[0] = -1e4
|
347 |
-
end_cause_logits[0] = -1e4
|
348 |
-
start_effect_logits[0] = -1e4
|
349 |
-
end_effect_logits[0] = -1e4
|
350 |
-
|
351 |
-
start_cause_logits[len(word_ids) - 1] = -1e4
|
352 |
-
end_cause_logits[len(word_ids) - 1] = -1e4
|
353 |
-
start_effect_logits[len(word_ids) - 1] = -1e4
|
354 |
-
end_effect_logits[len(word_ids) - 1] = -1e4
|
355 |
-
|
356 |
start_cause_logits = torch.log(torch.softmax(start_cause_logits, dim=-1))
|
357 |
end_cause_logits = torch.log(torch.softmax(end_cause_logits, dim=-1))
|
358 |
start_effect_logits = torch.log(torch.softmax(start_effect_logits, dim=-1))
|
@@ -360,19 +225,12 @@ class ST2ModelV2(nn.Module):
|
|
360 |
|
361 |
scores = dict()
|
362 |
for i in range(len(end_cause_logits)):
|
363 |
-
|
364 |
-
break
|
365 |
for j in range(i + 1, len(start_effect_logits)):
|
366 |
-
if attention_mask[j] == 0:
|
367 |
-
break
|
368 |
scores[str((i, j, "before"))] = end_cause_logits[i].item() + start_effect_logits[j].item()
|
369 |
|
370 |
for i in range(len(end_effect_logits)):
|
371 |
-
if attention_mask[i] == 0:
|
372 |
-
break
|
373 |
for j in range(i + 1, len(start_cause_logits)):
|
374 |
-
if attention_mask[j] == 0:
|
375 |
-
break
|
376 |
scores[str((i, j, "after"))] = start_cause_logits[j].item() + end_effect_logits[i].item()
|
377 |
|
378 |
|
|
|
41 |
self.dropout = nn.Dropout(classifier_dropout)
|
42 |
self.classifier = nn.Linear(self.config.hidden_size, 6)
|
43 |
|
44 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
if self.args.signal_classification and not self.args.pretrained_signal_detector:
|
47 |
self.signal_classifier = nn.Linear(self.config.hidden_size, 2)
|
|
|
73 |
"""
|
74 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
75 |
|
76 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
outputs = self.model(
|
79 |
+
input_ids,
|
80 |
+
attention_mask=attention_mask,
|
81 |
+
token_type_ids=token_type_ids,
|
82 |
+
position_ids=position_ids,
|
83 |
+
head_mask=head_mask,
|
84 |
+
inputs_embeds=inputs_embeds,
|
85 |
+
output_attentions=output_attentions,
|
86 |
+
output_hidden_states=output_hidden_states,
|
87 |
+
return_dict=return_dict,
|
88 |
+
)
|
89 |
|
90 |
sequence_output = outputs[0]
|
91 |
+
|
|
|
92 |
|
93 |
sequence_output = self.dropout(sequence_output)
|
94 |
logits = self.classifier(sequence_output) # [batch_size, max_seq_length, 6]
|
|
|
116 |
# start_logits = start_logits.squeeze(-1).contiguous()
|
117 |
# end_logits = end_logits.squeeze(-1).contiguous()
|
118 |
|
119 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
|
122 |
return {
|
|
|
127 |
'start_sig_logits': start_sig_logits,
|
128 |
'end_sig_logits': end_sig_logits,
|
129 |
'signal_classification_logits': signal_classification_logits,
|
130 |
+
|
|
|
|
|
|
|
|
|
131 |
}
|
132 |
|
133 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
def position_selector(
|
136 |
self,
|
|
|
213 |
start_effect_logits,
|
214 |
end_cause_logits,
|
215 |
end_effect_logits,
|
|
|
216 |
word_ids,
|
217 |
topk=5
|
218 |
):
|
219 |
# basic post processing (removing logits from [CLS], [SEP], [PAD])
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
start_cause_logits = torch.log(torch.softmax(start_cause_logits, dim=-1))
|
222 |
end_cause_logits = torch.log(torch.softmax(end_cause_logits, dim=-1))
|
223 |
start_effect_logits = torch.log(torch.softmax(start_effect_logits, dim=-1))
|
|
|
225 |
|
226 |
scores = dict()
|
227 |
for i in range(len(end_cause_logits)):
|
228 |
+
|
|
|
229 |
for j in range(i + 1, len(start_effect_logits)):
|
|
|
|
|
230 |
scores[str((i, j, "before"))] = end_cause_logits[i].item() + start_effect_logits[j].item()
|
231 |
|
232 |
for i in range(len(end_effect_logits)):
|
|
|
|
|
233 |
for j in range(i + 1, len(start_cause_logits)):
|
|
|
|
|
234 |
scores[str((i, j, "after"))] = start_cause_logits[j].item() + end_effect_logits[i].item()
|
235 |
|
236 |
|