import streamlit as st import torch from transformers import AutoConfig, AutoTokenizer, AutoModel from huggingface_hub import login import re import copy from modeling_st2 import ST2ModelV2, SignalDetector from huggingface_hub import hf_hub_download from safetensors.torch import load_file hf_token = st.secrets["HUGGINGFACE_TOKEN"] login(token=hf_token) @st.cache_resource def load_model(): config = AutoConfig.from_pretrained("roberta-large") tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True) class Args: def __init__(self): self.dropout = 0.1 self.signal_classification = True self.pretrained_signal_detector = False args = Args() model = ST2ModelV2(args) repo_id = "anamargarida/SpanExtractionWithSignalCls_2" filename = "model.safetensors" model_path = hf_hub_download(repo_id=repo_id, filename=filename) state_dict = load_file(model_path) model.load_state_dict(state_dict) return tokenizer, model tokenizer, model = load_model() model.eval() def extract_arguments(text, tokenizer, model, beam_search=True): class Args: def __init__(self): self.signal_classification = True self.pretrained_signal_detector = False args = Args() inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt") word_ids = inputs.word_ids() with torch.no_grad(): outputs = model(**inputs) start_cause_logits = outputs["start_arg0_logits"][0] end_cause_logits = outputs["end_arg0_logits"][0] start_effect_logits = outputs["start_arg1_logits"][0] end_effect_logits = outputs["end_arg1_logits"][0] start_signal_logits = outputs["start_sig_logits"][0] end_signal_logits = outputs["end_sig_logits"][0] # Set the first and last token logits to a very low value to ignore them start_cause_logits[0] = -1e-4 end_cause_logits[0] = -1e-4 start_effect_logits[0] = -1e-4 end_effect_logits[0] = -1e-4 start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 # Beam Search for position selection if beam_search: indices1, indices2, score1, score2, topk_scores = model.beam_search_position_selector( start_cause_logits=start_cause_logits, end_cause_logits=end_cause_logits, start_effect_logits=start_effect_logits, end_effect_logits=end_effect_logits, topk=5 ) start_cause1, end_cause1, start_effect1, end_effect1 = indices1 start_cause2, end_cause2, start_effect2, end_effect2 = indices2 else: start_cause1 = start_cause_logits.argmax().item() end_cause1 = end_cause_logits.argmax().item() start_effect1 = start_effect_logits.argmax().item() end_effect1 = end_effect_logits.argmax().item() start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None has_signal = 1 if args.signal_classification: if not args.pretrained_signal_detector: has_signal = outputs["signal_classification_logits"].argmax().item() else: has_signal = signal_detector.predict(text=batch["text"]) if has_signal: start_signal_logits[0] = -1e-4 end_signal_logits[0] = -1e-4 start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 start_signal = start_signal_logits.argmax().item() end_signal_logits[:start_signal] = -1e4 end_signal_logits[start_signal + 5:] = -1e4 end_signal = end_signal_logits.argmax().item() if not has_signal: start_signal, end_signal = None, None tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) token_ids = inputs["input_ids"][0] offset_mapping = inputs["offset_mapping"][0].tolist() def mark_text_by_position(original_text, start_token, end_token, color): """Marks text in the original string based on character positions.""" # Inserts tags into the original text based on token offsets. if start_token is not None and end_token is not None: #st.write(f"Start: {start_token}, End: {end_token}") if start_token > end_token: return None if start_token <= end_token: start_idx, end_idx = offset_mapping[start_token][0], offset_mapping[end_token][1] if start_idx is not None and end_idx is not None and start_idx < end_idx: #st.write(f"Start_idx: {start_idx}, End_idx: {end_idx}") return ( original_text[:start_idx] + f"" + original_text[start_idx:end_idx] + "" + original_text[end_idx:] ) return original_text cause_text1 = mark_text_by_position(input_text, start_cause1, end_cause1, "#FFD700") # yellow for cause effect_text1 = mark_text_by_position(input_text, start_effect1, end_effect1, "#90EE90") # green for effect if start_signal is not None and end_signal is not None: signal_text = mark_text_by_position(input_text, start_signal, end_signal, "#FF6347") # red for signal else: signal_text = None if beam_search: cause_text2 = mark_text_by_position(input_text, start_cause2, end_cause2, "#FFD700") effect_text2 = mark_text_by_position(input_text, start_effect2, end_effect2, "#90EE90") else: cause_text2 = None effect_text2 = None if beam_search: start_cause_probs = torch.softmax(start_cause_logits, dim=-1) end_cause_probs = torch.softmax(end_cause_logits, dim=-1) start_effect_probs = torch.softmax(start_effect_logits, dim=-1) end_effect_probs = torch.softmax(end_effect_logits, dim=-1) best_start_cause_score = start_cause_probs[start_cause1].item() best_end_cause_score = end_cause_probs[end_cause1].item() best_start_effect_score = start_effect_probs[start_effect1].item() best_end_effect_score = end_effect_probs[end_effect1].item() second_start_cause_score = start_cause_probs[start_cause2].item() second_end_cause_score = end_cause_probs[end_cause2].item() second_start_effect_score = start_effect_probs[start_effect2].item() second_end_effect_score = end_effect_probs[end_effect2].item() best_scores = { "Start Cause Score": round(best_start_cause_score, 4), "End Cause Score": round(best_end_cause_score, 4), "Start Effect Score": round(best_start_effect_score, 4), "End Effect Score": round(best_end_effect_score, 4), "Total Best Score [sum of log-probability scores]": round(score1, 4) } second_best_scores = { "Start Cause Score": round(second_start_cause_score, 4), "End Cause Score": round(second_end_cause_score, 4), "Start Effect Score": round(second_start_effect_score, 4), "End Effect Score": round(second_end_effect_score, 4), "Total Second Best Score [sum of log-probability scores]": round(score2, 4) } top5_scores = sorted(topk_scores.items(), key=lambda x: x[1], reverse=True)[:5] top5_scores = [(k, round(v, 4)) for k, v in top5_scores] else: best_scores = {} second_best_scores = {} top5_scores = {} return cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores st.title("Causal Relation Extraction") input_text = st.text_area("Enter your text here:", height=100) beam_search = st.radio("Enable Position Selector & Beam Search?", ('Yes', 'No')) == 'Yes' if st.button("Extract"): if input_text: cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores = extract_arguments(input_text, tokenizer, model, beam_search=beam_search) # Display first relation st.write("## Relation 1:") if cause_text1 is None or effect_text1 is None: st.write("The prediction is not correct for at least one span: The position of the predicted end token comes before the position of the start token.") else: st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True) st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True) st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True) if beam_search: # Display dictionary in Streamlit st.markdown(f"Best Tuple Scores:", unsafe_allow_html=True) st.json(best_scores) # Display second relation if beam search is enabled st.write("## Relation 2:") st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True) st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True) st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True) st.markdown(f"Second best Tuple Scores:", unsafe_allow_html=True) st.json(second_best_scores) st.markdown(f"top5_scores [sum of log-probability scores]:", unsafe_allow_html=True) # Unpack top 5 scores # first, second, third, fourth, fifth = top_5_scores st.json(top5_scores) else: st.warning("Please enter some text before extracting.")