|
import numpy as np |
|
import gradio as gr |
|
from detect import predict |
|
|
|
from config import PASCAL_CLASSES |
|
|
|
|
|
def inference( |
|
org_img: np.ndarray, |
|
iou_thresh: float, thresh: float, |
|
show_cam: str, |
|
transparency: float, |
|
): |
|
outputs = predict(org_img, iou_thresh, thresh, show_cam, transparency) |
|
return outputs |
|
|
|
|
|
|
|
title = "YoloV3 from Scratch on Pascal VOC Dataset with GradCAM" |
|
description = f"Pytorch Implemetation of YoloV3 trained from scratch on Pascal VOC dataset with GradCAM \n Class in pascol voc: {', '.join(PASCAL_CLASSES)}" |
|
examples = [ |
|
["images/000014.jpg", 0.5, 0.4, True, 0.5], |
|
["images/000017.jpg", 0.6, 0.5, True, 0.5], |
|
["images/000018.jpg", 0.55, 0.45, True, 0.5], |
|
["images/000030.jpg", 0.5, 0.4, True, 0.5], |
|
["images/Puppies.jpg", 0.6, 0.7, True, 0.5], |
|
] |
|
|
|
demo = gr.Interface( |
|
inference, |
|
inputs=[ |
|
gr.Image(label="Input Image"), |
|
gr.Slider(0, 1, value=0.5, label="IOU Threshold"), |
|
gr.Slider(0, 1, value=0.4, label="Threshold"), |
|
gr.Checkbox(label="Show Grad Cam"), |
|
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), |
|
], |
|
outputs=[ |
|
gr.Gallery(rows=2, columns=1), |
|
], |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
) |
|
demo.launch() |
|
|
|
|