parser / udpipe2 /udpipe2_server.py
anasampa2's picture
Upload 151 files
ee0ec3d verified
raw
history blame
22.3 kB
#!/usr/bin/env python3
# This file is part of UDPipe 2.0 <http://github.com/ufal/udpipe>.
#
# Copyright 2020 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University in Prague, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import argparse
import contextlib
import email.parser
import http.server
import itertools
import json
import os
import socketserver
import sys
import threading
import time
import unicodedata
import urllib.parse
import udpipe2
import udpipe2_dataset
import ufal.udpipe
import wembedding_service.wembeddings.wembeddings as wembeddings
__version__ = "2.1.1-dev"
class TooLongError(Exception):
pass
class Models:
class Model:
class Network:
_mutex = threading.Lock()
def __init__(self, path, server_args):
self._path = path
self._server_args = server_args
self.network, self.args, self.train = None, None, None
def load(self):
if self.network is not None:
return
with self._mutex:
if self.network is not None:
return
with open(os.path.join(self._path, "options.json"), mode="r") as options_file:
self.args = argparse.Namespace(**json.load(options_file))
udpipe2.UDPipe2.postprocess_arguments(self.args)
self.args.batch_size = self._server_args.batch_size
self.train = udpipe2_dataset.UDPipe2Dataset.load_mappings(os.path.join(self._path, "mappings.pickle"))
self.network = udpipe2.UDPipe2(threads=self._server_args.threads)
self.network.construct(self.args, self.train, [], [], predict_only=True)
self.network.load(self._path, self.args.morphodita)
print("Loaded model {}".format(os.path.basename(self._path)), file=sys.stderr, flush=True)
def __init__(self, names, path, network, variant, acknowledgements, server_args):
self.names = names
self.acknowledgements = acknowledgements
self._network = network
self._variant = variant
self._server_args = server_args
# Load the tokenizer
tokenizer_path = os.path.join(path, "{}.tokenizer".format(variant))
self._tokenizer = ufal.udpipe.Model.load(tokenizer_path)
if self._tokenizer is None:
raise RuntimeError("Cannot load tokenizer from {}".format(tokenizer_path))
self._conllu_input = ufal.udpipe.InputFormat.newConlluInputFormat()
if self._conllu_input is None:
raise RuntimeError("Cannot create CoNLL-U input format")
self._conllu_output = ufal.udpipe.OutputFormat.newConlluOutputFormat()
if self._conllu_output is None:
raise RuntimeError("Cannot create CoNLL-U output format")
# Load the network if requested
if names[0] in server_args.preload_models or "all" in server_args.preload_models:
self._network.load()
def read(self, text, input_format):
reader = ufal.udpipe.InputFormat.newInputFormat(input_format)
if reader is None:
raise RuntimeError("Unknown input format '{}'".format(input_format))
# Do not return a generator, but a list to raise exceptions early
return list(self._read(text, reader))
def tokenize(self, text, tokenizer_options):
tokenizer = self._tokenizer.newTokenizer(tokenizer_options)
if tokenizer is None:
raise RuntimeError("Cannot create tokenizer.")
# Do not return a generator, but a list to raise exceptions early
return list(self._read(text, tokenizer))
def _read(self, text, reader):
sentence = ufal.udpipe.Sentence()
processing_error = ufal.udpipe.ProcessingError()
reader.setText(text)
while reader.nextSentence(sentence, processing_error):
if len(sentence.words) > 1001:
raise TooLongError()
yield sentence
sentence = ufal.udpipe.Sentence()
if processing_error.occurred():
raise RuntimeError("Cannot read input data: '{}'".format(processing_error.message))
def create_writer(self, output_format):
writer = ufal.udpipe.OutputFormat.newOutputFormat(output_format)
if writer is None:
raise RuntimeError("Unknown output format '{}'".format(output_format))
return writer
def predict(self, sentences, tag, parse, writer):
# Run the model
if tag or parse:
# Load the network if it has not been loaded already
self._network.load()
wembedding_input, conllu_input = [], []
for sentence in sentences:
wembedding_input.append([word.form for word in sentence.words[1:]])
conllu_input.append(self._conllu_output.writeSentence(sentence))
time_wes = time.time()
# Compute the WEmbeddings
with self._server_args.optional_semaphore:
time_we = time.time()
if self._network.args.wembedding_model:
wembeddings = self._server_args.wembedding_server.compute_embeddings(self._network.args.wembedding_model, wembedding_input)
else:
wembeddings = []
time_ds = time.time()
# Create UDPipe2Dataset
dataset = udpipe2_dataset.UDPipe2Dataset(text="".join(conllu_input), train=self._network.train, shuffle_batches=False,
embeddings=wembeddings, override_variant=self._variant)
# Prepare network arguments
network_args = argparse.Namespace(**vars(self._network.args))
if not tag: network_args.tags = []
if not parse: network_args.parse = 0
# Perform the prediction
time_nws = time.time()
with self._server_args.optional_semaphore:
time_nw = time.time()
predicted = self._network.network.predict(dataset, evaluating=False, args=network_args)
time_rd = time.time()
# Load the predicted CoNLL-U to ufal.udpipe sentences
sentences = self._read(predicted, self._conllu_input)
print("Request, WE {:.2f}+{:.2f}ms,".format(1000 * (time_ds - time_we), 1000 * (time_we - time_wes)),
"DS {:.2f}ms,".format(1000 * (time_nws - time_ds)),
"NW {:.2f}+{:.2f}ms,".format(1000 * (time_rd - time_nw), 1000 * (time_nw - time_nws)),
"RD {:.2f}ms.".format(1000 * (time.time() - time_rd)),
file=sys.stderr, flush=True)
# Generate output
output = []
for sentence in sentences:
output.append(writer.writeSentence(sentence))
output.append(writer.finishDocument())
return "".join(output)
def __init__(self, server_args):
self.default_model = server_args.default_model
self.models_list = []
self.models_by_names = {}
networks_by_path = {}
for i in range(0, len(server_args.models), 4):
names, path, variant, acknowledgements = server_args.models[i:i+4]
names = names.split(":")
names = [name.split("-") for name in names]
names = ["-".join(parts[:None if not i else -i]) for parts in names for i in range(len(parts))]
if not path in networks_by_path:
networks_by_path[path] = self.Model.Network(path, server_args)
self.models_list.append(self.Model(names, path, networks_by_path[path], variant, acknowledgements, server_args))
for name in names:
self.models_by_names.setdefault(name, self.models_list[-1])
# Check the default model exists
assert self.default_model in self.models_by_names
class UDServer(socketserver.ThreadingTCPServer):
class UDServerRequestHandler(http.server.BaseHTTPRequestHandler):
protocol_version = "HTTP/1.1"
def respond(request, content_type, code=200, additional_headers={}):
request.close_connection = True
request.send_response(code)
request.send_header("Connection", "close")
request.send_header("Content-Type", content_type)
request.send_header("Access-Control-Allow-Origin", "*")
for key, value in additional_headers.items():
request.send_header(key, value)
request.end_headers()
def respond_error(request, message, code=400):
request.respond("text/plain", code)
request.wfile.write(message.encode("utf-8"))
def do_GET(request):
# Parse the URL
params = {}
try:
request.path = request.path.encode("iso-8859-1").decode("utf-8")
url = urllib.parse.urlparse(request.path)
for name, value in urllib.parse.parse_qsl(url.query, encoding="utf-8", keep_blank_values=True, errors="strict"):
params[name] = value
except:
return request.respond_error("Cannot parse request URL.")
# Parse the body of a POST request
if request.command == "POST":
if request.headers.get("Transfer-Encoding", "identity").lower() != "identity":
return request.respond_error("Only 'identity' Transfer-Encoding of payload is supported for now.")
try:
content_length = int(request.headers["Content-Length"])
except:
return request.respond_error("The Content-Length of payload is required.")
if content_length > request.server._server_args.max_request_size:
return request.respond_error("The payload size is too large.")
# Raw text on input for weblicht
if url.path.startswith("/weblicht/"):
# Ignore all but `model` GET param
params = {"model": params["model"]} if "model" in params else {}
try:
params["data"] = request.rfile.read(content_length).decode("utf-8")
except:
return request.respond_error("The payload is not in UTF-8 encoding.")
if url.path == "/weblicht/tokenize": params["tokenizer"] = ""
else: params["input"] = "conllu"
params["output"] = "conllu"
if url.path == "/weblicht/tag": params["tagger"] = ""
if url.path == "/weblicht/parse": params["parser"] = ""
# multipart/form-data
elif request.headers.get("Content-Type", "").startswith("multipart/form-data"):
try:
parser = email.parser.BytesFeedParser()
parser.feed(b"Content-Type: " + request.headers["Content-Type"].encode("ascii") + b"\r\n\r\n")
while content_length:
parser.feed(request.rfile.read(min(content_length, 4096)))
content_length -= min(content_length, 4096)
for part in parser.close().get_payload():
name = part.get_param("name", header="Content-Disposition")
if name:
params[name] = part.get_payload(decode=True).decode("utf-8")
except:
return request.respond_error("Cannot parse the multipart/form-data payload.")
# application/x-www-form-urlencoded
elif request.headers.get("Content-Type", "").startswith("application/x-www-form-urlencoded"):
try:
for name, value in urllib.parse.parse_qsl(
request.rfile.read(content_length).decode("utf-8"), encoding="utf-8", keep_blank_values=True, errors="strict"):
params[name] = value
except:
return request.respond_error("Cannot parse the application/x-www-form-urlencoded payload.")
else:
return request.respond_error("Unsupported payload Content-Type '{}'.".format(request.headers.get("Content-Type", "<none>")))
# Handle /models
if url.path == "/models":
response = {
"models": {model.names[0]: ["tokenizer", "tagger", "parser"] for model in request.server._models.models_list},
"default_model": request.server._models.default_model,
}
request.respond("application/json")
request.wfile.write(json.dumps(response, indent=1).encode("utf-8"))
# Handle /process
elif url.path in ["/process", "/weblicht/tokenize", "/weblicht/tag", "/weblicht/parse"]:
weblicht = url.path.startswith("/weblicht")
if "data" not in params:
return request.respond_error("The parameter 'data' is required.")
params["data"] = unicodedata.normalize("NFC", params["data"])
model = params.get("model", request.server._models.default_model)
if model not in request.server._models.models_by_names:
return request.respond_error("The requested model '{}' does not exist.".format(model))
model = request.server._models.models_by_names[model]
# Start by reading and optionally tokenizing the input data.
if "tokenizer" in params:
try:
sentences = model.tokenize(params["data"], params["tokenizer"])
except TooLongError:
return request.respond_error("During tokenization, sentence longer than 1000 words was found, aborting.\nThat should only happen with presegmented input.\nPlease make sure you do not generate such long sentences.\n")
except:
return request.respond_error("An error occured during tokenization of the input.")
else:
try:
sentences = model.read(params["data"], params.get("input", "conllu"))
except TooLongError:
return request.respond_error("Sentence longer than 1000 words was found on input, aborting.\nPlease make sure the input sentences have at most 1000 words.\n")
except:
return request.respond_error("Cannot parse the input in '{}' format.".format(params.get("input", "conllu")))
infclen = sum(sum(len(word.form) for word in sentence.words[1:]) for sentence in sentences)
# Create the writer
output_format = params.get("output", "conllu")
try:
writer = model.create_writer(output_format)
except:
return request.respond_error("Unknown output format '{}'.".format(output_format))
# Process the data
tag, parse, output_format = "tagger" in params, "parser" in params, params.get("output", "conllu")
batch, started_responding = [], False
try:
for sentence in itertools.chain(sentences, ["EOF"]):
if sentence == "EOF" or len(batch) == request.server._server_args.batch_size:
output = model.predict(batch, tag, parse, writer)
if not started_responding:
# The first batch is ready, we commit to generate output.
started_responding=True
if weblicht:
request.respond("application/conllu")
else:
request.respond("application/json", additional_headers={"X-Billing-Input-NFC-Len": str(infclen)})
request.wfile.write(json.dumps({
"model": model.names[0],
"acknowledgements": ["http://ufal.mff.cuni.cz/udpipe/2#udpipe2_acknowledgements", model.acknowledgements],
"result": "",
}, indent=1)[:-3].encode("utf-8"))
if output_format == "conllu":
request.wfile.write(json.dumps(
"# generator = UDPipe 2, https://lindat.mff.cuni.cz/services/udpipe\n"
"# udpipe_model = {}\n"
"# udpipe_model_licence = CC BY-NC-SA\n".format(model.names[0]))[1:-1].encode("utf-8"))
if weblicht:
request.wfile.write(output.encode("utf-8"))
else:
request.wfile.write(json.dumps(output, ensure_ascii=False)[1:-1].encode("utf-8"))
batch = []
batch.append(sentence)
if not weblicht:
request.wfile.write(b'"\n}\n')
except:
import traceback
traceback.print_exc(file=sys.stderr)
sys.stderr.flush()
if not started_responding:
request.respond_error("An internal error occurred during processing.")
else:
if weblicht:
request.wfile.write(b'\n\nAn internal error occurred during processing, producing incorrect CoNLL-U!')
else:
request.wfile.write(b'",\n"An internal error occurred during processing, producing incorrect JSON!"')
# Unknown URL
else:
request.respond_error("No handler for the given URL '{}'".format(url.path), code=404)
def do_POST(request):
return request.do_GET()
daemon_threads = False
def __init__(self, server_args, models):
super().__init__(("", server_args.port), self.UDServerRequestHandler)
self._server_args = server_args
self._models = models
def server_bind(self):
import socket
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
super().server_bind()
def service_actions(self):
if isinstance(getattr(self, "_threads", None), list):
if len(self._threads) >= 1024:
self._threads = [thread for thread in self._threads if thread.is_alive()]
if __name__ == "__main__":
import signal
import threading
# Parse server arguments
parser = argparse.ArgumentParser()
parser.add_argument("port", type=int, help="Port to use")
parser.add_argument("default_model", type=str, help="Default model")
parser.add_argument("models", type=str, nargs="+", help="Models to serve")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size")
parser.add_argument("--concurrent", default=None, type=int, help="Concurrent computations of NN")
parser.add_argument("--logfile", default=None, type=str, help="Log path")
parser.add_argument("--max_request_size", default=4096*1024, type=int, help="Maximum request size")
parser.add_argument("--preload_models", default=[], nargs="*", type=str, help="Models to preload, or `all`")
parser.add_argument("--threads", default=0, type=int, help="Threads to use")
parser.add_argument("--wembedding_preload_models", default=[], nargs="*", type=str, help="WEmbedding models to preload")
parser.add_argument("--wembedding_server", default=None, type=str, help="Address of an WEmbedding server")
args = parser.parse_args()
# Log stderr to logfile if given
if args.logfile is not None:
sys.stderr = open(args.logfile, "a", encoding="utf-8")
# Load the models
models = Models(args)
# Create the WEmbeddings client
if args.wembedding_server is not None:
args.wembedding_server = wembeddings.WEmbeddings.ClientNetwork(args.wembedding_server)
else:
args.wembedding_server = wembeddings.WEmbeddings(threads=args.threads, preload_models=args.wembedding_preload_models)
# Create a semaphore if needed
args.optional_semaphore = threading.Semaphore(args.concurrent) if args.concurrent is not None else contextlib.nullcontext()
# Create the server
server = UDServer(args, models)
server_thread = threading.Thread(target=server.serve_forever, daemon=True)
server_thread.start()
print("Started UDPipe 2 server on port {}.".format(args.port), file=sys.stderr)
print("To stop it gracefully, either send SIGINT (Ctrl+C) or SIGUSR1.", file=sys.stderr, flush=True)
# Wait until the server should be closed
signal.pthread_sigmask(signal.SIG_BLOCK, [signal.SIGINT, signal.SIGUSR1])
signal.sigwait([signal.SIGINT, signal.SIGUSR1])
print("Initiating shutdown of the UDPipe 2 server.", file=sys.stderr, flush=True)
server.shutdown()
print("Stopped handling new requests, processing all current ones.", file=sys.stderr, flush=True)
server.server_close()
print("Finished shutdown of the UDPipe 2 server.", file=sys.stderr, flush=True)