anasmkh's picture
Update app.py
62d5359 verified
raw
history blame
6.22 kB
import os
import shutil
import gradio as gr
import qdrant_client
from getpass import getpass
# Set your OpenAI API key from environment variables.
openai_api_key = os.getenv('OPENAI_API_KEY')
# -------------------------------------------------------
# Configure LlamaIndex with OpenAI LLM and Embeddings
# -------------------------------------------------------
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
# -------------------------------------------------------
# Import document readers, index, vector store, memory, etc.
# -------------------------------------------------------
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core.memory import ChatMemoryBuffer
# Global variables to hold the index and chat engine.
chat_engine = None
index = None
query_engine = None
memory = None
client = None
vector_store = None
storage_context = None
# -------------------------------------------------------
# Function to process uploaded files and build the index.
# -------------------------------------------------------
def process_upload(files):
"""
Accepts a list of uploaded file paths, saves them to a local folder,
loads them as documents, and builds the vector index and chat engine.
This version accumulates files, so if you upload more files later,
they are added to the existing document set.
"""
upload_dir = "uploaded_files"
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
# Copy new files into the folder without clearing existing ones.
for file_path in files:
file_name = os.path.basename(file_path)
dest = os.path.join(upload_dir, file_name)
if not os.path.exists(dest):
shutil.copy(file_path, dest)
# Load documents from the saved folder.
documents = SimpleDirectoryReader(upload_dir).load_data()
# Build the index and chat engine using Qdrant as the vector store.
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
client = qdrant_client.QdrantClient(location=":memory:")
vector_store = QdrantVectorStore(
collection_name="paper",
client=client,
enable_hybrid=True,
batch_size=20,
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=(
"You are an AI assistant who answers the user questions, "
"use the schema fields to generate appropriate and valid json queries"
),
)
return "Documents uploaded and index built successfully!"
# -------------------------------------------------------
# Chat function that uses the built chat engine.
# -------------------------------------------------------
def chat_with_ai(user_input, chat_history):
global chat_engine
# Check if the chat engine is initialized.
if chat_engine is None:
return chat_history, "Please upload documents first."
response = chat_engine.chat(user_input)
references = response.source_nodes
ref, pages = [], []
# Extract file names from the source nodes (if available)
for node in references:
file_name = node.metadata.get('file_name')
if file_name and file_name not in ref:
ref.append(file_name)
complete_response = str(response) + "\n\n"
if ref or pages:
chat_history.append((user_input, complete_response))
else:
chat_history.append((user_input, str(response)))
return chat_history, ""
# -------------------------------------------------------
# Function to clear the chat history.
# -------------------------------------------------------
def clear_history():
return [], ""
# -------------------------------------------------------
# Build the Gradio interface.
# -------------------------------------------------------
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
# Use Tabs to separate the file upload and chat interfaces.
with gr.Tab("Upload Documents"):
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
# The file upload widget: we specify allowed file types.
file_upload = gr.File(
label="Upload Files",
file_count="multiple",
file_types=[".pdf", ".csv", ".txt", ".xlsx", ".xls", ".doc", ".docx"],
type="filepath"
)
upload_status = gr.Textbox(label="Upload Status", interactive=False)
upload_button = gr.Button("Process Upload")
upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
with gr.Tab("Chat"):
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
user_input = gr.Textbox(
placeholder="Ask a question...", label="Enter your question"
)
submit_button = gr.Button("Send")
btn_clear = gr.Button("Clear History")
# A State to hold the chat history.
chat_history = gr.State([])
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
btn_clear.click(clear_history, outputs=[chatbot, user_input])
return demo
# Launch the Gradio app.
gradio_interface().launch(debug=True)