anasmkh's picture
Update app.py
3547f0a verified
raw
history blame
3.74 kB
import os
from getpass import getpass
openai_api_key = os.getenv('OPENAI_API_KEY')
openai_api_key = openai_api_key
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo",temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("new_file").load_data()
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
import qdrant_client
client = qdrant_client.QdrantClient(
location=":memory:",
)
vector_store = QdrantVectorStore(
collection_name = "paper",
client=client,
enable_hybrid=True,
batch_size=20,
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
query_engine = index.as_query_engine(
vector_store_query_mode="hybrid"
)
from llama_index.core.memory import ChatMemoryBuffer
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=(
"""You are an AI assistant who answers the user questions,
use the schema fields to generate appriopriate and valid json queries"""
),
)
# def is_greeting(user_input):
# greetings = ["hello", "hi", "hey", "good morning", "good afternoon", "good evening", "greetings"]
# user_input_lower = user_input.lower().strip()
# return any(greet in user_input_lower for greet in greetings)
# def is_bye(user_input):
# greetings = ["thanks", "thanks you", "thanks a lot", "good answer", "good bye", "bye bye"]
# user_input_lower = user_input.lower().strip()
# return any(greet in user_input_lower for greet in greetings)
import gradio as gr
def chat_with_ai(user_input, chat_history):
# if is_greeting(user_input):
# response = 'hi, how can i help you?'
# chat_history.append((user_input, response))
# return chat_history, ""
# elif is_bye(user_input):
# response = "you're wlocome"
# chat_history.append((user_input, response))
# return chat_history, ""
response = chat_engine.chat(user_input)
references = response.source_nodes
ref,pages = [],[]
for i in range(len(references)):
if references[i].metadata['file_name'] not in ref:
ref.append(references[i].metadata['file_name'])
# pages.append(references[i].metadata['page_label'])
complete_response = str(response) + "\n\n"
if ref !=[] or pages!=[]:
chat_history.append((user_input, complete_response))
ref = []
elif ref==[] or pages==[]:
chat_history.append((user_input,str(response)))
return chat_history, ""
def clear_history():
return [], ""
def gradio_chatbot():
with gr.Blocks() as demo:
gr.Markdown("# Chat Interface for LlamaIndex")
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
user_input = gr.Textbox(
placeholder="Ask a question...", label="Enter your question"
)
submit_button = gr.Button("Send")
btn_clear = gr.Button("Delete Context")
chat_history = gr.State([])
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
btn_clear.click(fn=clear_history, outputs=[chatbot, user_input])
return demo
gradio_chatbot().launch(debug=True)