Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import os
|
2 |
import shutil
|
3 |
-
|
|
|
4 |
|
5 |
-
|
6 |
from llama_index.llms.openai import OpenAI
|
7 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
8 |
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex, StorageContext
|
@@ -10,12 +11,16 @@ from llama_index.vector_stores.qdrant import QdrantVectorStore
|
|
10 |
from llama_index.core.memory import ChatMemoryBuffer
|
11 |
import qdrant_client
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
if not openai_api_key:
|
16 |
raise ValueError("Please set your OPENAI_API_KEY environment variable.")
|
17 |
|
18 |
-
#
|
19 |
SYSTEM_PROMPT = (
|
20 |
"You are an AI assistant who answers the user questions, "
|
21 |
"use the schema fields to generate appropriate and valid json queries"
|
@@ -26,7 +31,10 @@ Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
|
|
26 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
27 |
|
28 |
# Load initial documents from a directory called "new_file"
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
# Set up the Qdrant vector store (using an in-memory collection for simplicity)
|
32 |
client = qdrant_client.QdrantClient(location=":memory:")
|
@@ -38,7 +46,7 @@ vector_store = QdrantVectorStore(
|
|
38 |
)
|
39 |
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
40 |
|
41 |
-
# Build the initial index and
|
42 |
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
43 |
chat_memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
44 |
chat_engine = index.as_chat_engine(
|
@@ -47,35 +55,42 @@ chat_engine = index.as_chat_engine(
|
|
47 |
system_prompt=SYSTEM_PROMPT,
|
48 |
)
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
Process the uploaded file:
|
53 |
1. Save the file to an "uploads" folder.
|
54 |
-
2. Copy it to a temporary folder ("temp_upload")
|
55 |
-
3.
|
56 |
"""
|
57 |
if uploaded_file is None:
|
58 |
return "No file uploaded."
|
59 |
|
60 |
-
#
|
61 |
-
file_name = os.path.basename(uploaded_file)
|
62 |
uploads_dir = "uploads"
|
63 |
os.makedirs(uploads_dir, exist_ok=True)
|
|
|
|
|
|
|
64 |
dest_path = os.path.join(uploads_dir, file_name)
|
65 |
-
|
|
|
66 |
|
67 |
-
# Prepare a temporary directory
|
68 |
temp_dir = "temp_upload"
|
69 |
os.makedirs(temp_dir, exist_ok=True)
|
70 |
-
# Clear
|
71 |
-
for
|
72 |
-
os.remove(os.path.join(temp_dir,
|
73 |
shutil.copy(dest_path, temp_dir)
|
74 |
|
75 |
-
# Load
|
76 |
new_docs = SimpleDirectoryReader(temp_dir).load_data()
|
77 |
|
78 |
-
# Update
|
79 |
global documents, index, chat_engine
|
80 |
documents.extend(new_docs)
|
81 |
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
@@ -85,60 +100,75 @@ def process_uploaded_file(uploaded_file):
|
|
85 |
system_prompt=SYSTEM_PROMPT,
|
86 |
)
|
87 |
|
88 |
-
return f"File '{file_name}' processed and added to index."
|
89 |
|
90 |
-
def chat_with_ai(user_input
|
91 |
"""
|
92 |
-
Send
|
93 |
"""
|
94 |
response = chat_engine.chat(user_input)
|
95 |
-
#
|
96 |
references = response.source_nodes
|
97 |
ref = []
|
98 |
for node in references:
|
99 |
if "file_name" in node.metadata and node.metadata["file_name"] not in ref:
|
100 |
ref.append(node.metadata["file_name"])
|
101 |
-
# Create a complete response string with references if present
|
102 |
complete_response = str(response)
|
103 |
if ref:
|
104 |
complete_response += "\n\nReferences: " + ", ".join(ref)
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
def clear_history():
|
109 |
-
return [], ""
|
110 |
-
|
111 |
-
def gradio_chatbot():
|
112 |
-
"""
|
113 |
-
Create a Gradio interface with two tabs:
|
114 |
-
- "Chat" for interacting with the chat engine.
|
115 |
-
- "Upload" for uploading new files to update the index.
|
116 |
-
"""
|
117 |
-
with gr.Blocks() as demo:
|
118 |
-
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
|
119 |
-
|
120 |
-
with gr.Tab("Chat"):
|
121 |
-
# Chat interface components
|
122 |
-
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
|
123 |
-
user_input = gr.Textbox(placeholder="Ask a question...", label="Enter your question")
|
124 |
-
submit_button = gr.Button("Send")
|
125 |
-
btn_clear = gr.Button("Delete Context")
|
126 |
-
chat_history = gr.State([])
|
127 |
-
submit_button.click(chat_with_ai, inputs=[user_input, chat_history],
|
128 |
-
outputs=[chatbot, user_input])
|
129 |
-
user_input.submit(chat_with_ai, inputs=[user_input, chat_history],
|
130 |
-
outputs=[chatbot, user_input])
|
131 |
-
btn_clear.click(fn=clear_history, outputs=[chatbot, user_input])
|
132 |
-
|
133 |
-
with gr.Tab("Upload"):
|
134 |
-
gr.Markdown("### Upload a file to add its content to the index")
|
135 |
-
file_upload = gr.File(label="Choose a file")
|
136 |
-
upload_button = gr.Button("Upload and Process")
|
137 |
-
upload_status = gr.Textbox(label="Upload Status")
|
138 |
-
upload_button.click(process_uploaded_file, inputs=[file_upload], outputs=[upload_status])
|
139 |
-
|
140 |
-
|
141 |
-
return demo
|
142 |
-
|
143 |
-
if __name__ == "__main__":
|
144 |
-
gradio_chatbot().launch(debug=True)
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
+
import streamlit as st
|
4 |
+
from io import BytesIO
|
5 |
|
6 |
+
# Importing LlamaIndex components
|
7 |
from llama_index.llms.openai import OpenAI
|
8 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
9 |
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex, StorageContext
|
|
|
11 |
from llama_index.core.memory import ChatMemoryBuffer
|
12 |
import qdrant_client
|
13 |
|
14 |
+
# =============================================================================
|
15 |
+
# Configuration and Global Initialization
|
16 |
+
# =============================================================================
|
17 |
+
|
18 |
+
# Ensure that the OpenAI API key is available
|
19 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
20 |
if not openai_api_key:
|
21 |
raise ValueError("Please set your OPENAI_API_KEY environment variable.")
|
22 |
|
23 |
+
# System prompt for the chat engine
|
24 |
SYSTEM_PROMPT = (
|
25 |
"You are an AI assistant who answers the user questions, "
|
26 |
"use the schema fields to generate appropriate and valid json queries"
|
|
|
31 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
32 |
|
33 |
# Load initial documents from a directory called "new_file"
|
34 |
+
if os.path.exists("new_file"):
|
35 |
+
documents = SimpleDirectoryReader("new_file").load_data()
|
36 |
+
else:
|
37 |
+
documents = []
|
38 |
|
39 |
# Set up the Qdrant vector store (using an in-memory collection for simplicity)
|
40 |
client = qdrant_client.QdrantClient(location=":memory:")
|
|
|
46 |
)
|
47 |
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
48 |
|
49 |
+
# Build the initial index and chat engine
|
50 |
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
51 |
chat_memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
52 |
chat_engine = index.as_chat_engine(
|
|
|
55 |
system_prompt=SYSTEM_PROMPT,
|
56 |
)
|
57 |
|
58 |
+
# =============================================================================
|
59 |
+
# Helper Functions
|
60 |
+
# =============================================================================
|
61 |
+
|
62 |
+
def process_uploaded_file(uploaded_file: BytesIO) -> str:
|
63 |
"""
|
64 |
Process the uploaded file:
|
65 |
1. Save the file to an "uploads" folder.
|
66 |
+
2. Copy it to a temporary folder ("temp_upload") for reading.
|
67 |
+
3. Update the global documents list and rebuild the index and chat engine.
|
68 |
"""
|
69 |
if uploaded_file is None:
|
70 |
return "No file uploaded."
|
71 |
|
72 |
+
# Ensure the uploads directory exists
|
|
|
73 |
uploads_dir = "uploads"
|
74 |
os.makedirs(uploads_dir, exist_ok=True)
|
75 |
+
|
76 |
+
# Save the uploaded file locally
|
77 |
+
file_name = uploaded_file.name
|
78 |
dest_path = os.path.join(uploads_dir, file_name)
|
79 |
+
with open(dest_path, "wb") as f:
|
80 |
+
f.write(uploaded_file.getbuffer())
|
81 |
|
82 |
+
# Prepare a temporary directory for processing the file
|
83 |
temp_dir = "temp_upload"
|
84 |
os.makedirs(temp_dir, exist_ok=True)
|
85 |
+
# Clear any existing file in temp_upload directory
|
86 |
+
for f_name in os.listdir(temp_dir):
|
87 |
+
os.remove(os.path.join(temp_dir, f_name))
|
88 |
shutil.copy(dest_path, temp_dir)
|
89 |
|
90 |
+
# Load new document(s) from the temporary folder using SimpleDirectoryReader
|
91 |
new_docs = SimpleDirectoryReader(temp_dir).load_data()
|
92 |
|
93 |
+
# Update global documents and rebuild the index and chat engine
|
94 |
global documents, index, chat_engine
|
95 |
documents.extend(new_docs)
|
96 |
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
|
|
100 |
system_prompt=SYSTEM_PROMPT,
|
101 |
)
|
102 |
|
103 |
+
return f"File '{file_name}' processed and added to the index."
|
104 |
|
105 |
+
def chat_with_ai(user_input: str) -> str:
|
106 |
"""
|
107 |
+
Send user input to the chat engine and return the response.
|
108 |
"""
|
109 |
response = chat_engine.chat(user_input)
|
110 |
+
# Extract references from the response (if any)
|
111 |
references = response.source_nodes
|
112 |
ref = []
|
113 |
for node in references:
|
114 |
if "file_name" in node.metadata and node.metadata["file_name"] not in ref:
|
115 |
ref.append(node.metadata["file_name"])
|
|
|
116 |
complete_response = str(response)
|
117 |
if ref:
|
118 |
complete_response += "\n\nReferences: " + ", ".join(ref)
|
119 |
+
return complete_response
|
120 |
+
|
121 |
+
# =============================================================================
|
122 |
+
# Streamlit App Layout
|
123 |
+
# =============================================================================
|
124 |
+
|
125 |
+
st.set_page_config(page_title="LlamaIndex Chat & File Upload", layout="wide")
|
126 |
+
st.title("Chat Interface for LlamaIndex with File Upload")
|
127 |
+
|
128 |
+
# Use Streamlit tabs for separate Chat and Upload functionalities
|
129 |
+
tab1, tab2 = st.tabs(["Chat", "Upload"])
|
130 |
+
|
131 |
+
# -----------------------------------------------------------------------------
|
132 |
+
# Chat Tab
|
133 |
+
# -----------------------------------------------------------------------------
|
134 |
+
with tab1:
|
135 |
+
st.header("Chat with the AI")
|
136 |
+
# Initialize chat history in session state if it does not exist
|
137 |
+
if "chat_history" not in st.session_state:
|
138 |
+
st.session_state["chat_history"] = []
|
139 |
+
|
140 |
+
# Display conversation history
|
141 |
+
for chat in st.session_state["chat_history"]:
|
142 |
+
st.markdown(f"**User:** {chat[0]}")
|
143 |
+
st.markdown(f"**AI:** {chat[1]}")
|
144 |
+
st.markdown("---")
|
145 |
+
|
146 |
+
# Input text for user query
|
147 |
+
user_input = st.text_input("Enter your question:")
|
148 |
+
|
149 |
+
# When the "Send" button is clicked, process the chat
|
150 |
+
if st.button("Send") and user_input:
|
151 |
+
with st.spinner("Processing..."):
|
152 |
+
response = chat_with_ai(user_input)
|
153 |
+
st.session_state["chat_history"].append((user_input, response))
|
154 |
+
st.experimental_rerun() # Refresh the page to show updated history
|
155 |
+
|
156 |
+
# Button to clear the conversation history
|
157 |
+
if st.button("Clear History"):
|
158 |
+
st.session_state["chat_history"] = []
|
159 |
+
st.experimental_rerun()
|
160 |
+
|
161 |
+
# -----------------------------------------------------------------------------
|
162 |
+
# Upload Tab
|
163 |
+
# -----------------------------------------------------------------------------
|
164 |
+
with tab2:
|
165 |
+
st.header("Upload a File")
|
166 |
+
uploaded_file = st.file_uploader("Choose a file to upload", type=["txt", "pdf", "doc", "docx", "csv", "xlsx"])
|
167 |
+
if st.button("Upload and Process"):
|
168 |
+
if uploaded_file is not None:
|
169 |
+
with st.spinner("Uploading and processing file..."):
|
170 |
+
status = process_uploaded_file(uploaded_file)
|
171 |
+
st.success(status)
|
172 |
+
else:
|
173 |
+
st.error("No file uploaded.")
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|