Update app.py
Browse files
app.py
CHANGED
@@ -1,120 +1,144 @@
|
|
1 |
-
|
2 |
import os
|
|
|
3 |
from getpass import getpass
|
4 |
|
5 |
-
|
6 |
-
openai_api_key = openai_api_key
|
7 |
-
|
8 |
-
|
9 |
from llama_index.llms.openai import OpenAI
|
10 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
11 |
-
from llama_index.core import Settings
|
12 |
-
|
13 |
-
Settings.llm = OpenAI(model="gpt-3.5-turbo",temperature=0.4)
|
14 |
-
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
15 |
-
|
16 |
-
from llama_index.core import SimpleDirectoryReader
|
17 |
-
|
18 |
-
documents = SimpleDirectoryReader("new_file").load_data()
|
19 |
-
|
20 |
-
from llama_index.core import VectorStoreIndex, StorageContext
|
21 |
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
|
|
22 |
import qdrant_client
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
vector_store = QdrantVectorStore(
|
29 |
-
collection_name
|
30 |
client=client,
|
31 |
enable_hybrid=True,
|
32 |
batch_size=20,
|
33 |
)
|
34 |
-
|
35 |
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
36 |
|
37 |
-
index
|
38 |
-
|
39 |
-
|
40 |
-
)
|
41 |
-
|
42 |
-
query_engine = index.as_query_engine(
|
43 |
-
vector_store_query_mode="hybrid"
|
44 |
-
)
|
45 |
-
|
46 |
-
from llama_index.core.memory import ChatMemoryBuffer
|
47 |
-
|
48 |
-
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
49 |
-
|
50 |
chat_engine = index.as_chat_engine(
|
51 |
chat_mode="context",
|
52 |
-
memory=
|
53 |
-
system_prompt=
|
54 |
-
"""You are an AI assistant who answers the user questions,
|
55 |
-
use the schema fields to generate appriopriate and valid json queries"""
|
56 |
-
),
|
57 |
)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
# greetings = ["thanks", "thanks you", "thanks a lot", "good answer", "good bye", "bye bye"]
|
67 |
-
# user_input_lower = user_input.lower().strip()
|
68 |
-
# return any(greet in user_input_lower for greet in greetings)
|
69 |
-
import gradio as gr
|
70 |
def chat_with_ai(user_input, chat_history):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# return chat_history, ""
|
75 |
-
# elif is_bye(user_input):
|
76 |
-
# response = "you're wlocome"
|
77 |
-
# chat_history.append((user_input, response))
|
78 |
-
# return chat_history, ""
|
79 |
response = chat_engine.chat(user_input)
|
|
|
80 |
references = response.source_nodes
|
81 |
-
ref
|
82 |
-
for
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
complete_response = str(response)
|
87 |
-
if ref
|
88 |
-
|
89 |
-
|
90 |
-
elif ref==[] or pages==[]:
|
91 |
-
chat_history.append((user_input,str(response)))
|
92 |
-
|
93 |
return chat_history, ""
|
94 |
|
95 |
def clear_history():
|
96 |
return [], ""
|
97 |
|
98 |
def gradio_chatbot():
|
|
|
|
|
|
|
|
|
|
|
99 |
with gr.Blocks() as demo:
|
100 |
-
gr.Markdown("# Chat Interface for LlamaIndex")
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
118 |
return demo
|
119 |
|
120 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import shutil
|
3 |
from getpass import getpass
|
4 |
|
5 |
+
import gradio as gr
|
|
|
|
|
|
|
6 |
from llama_index.llms.openai import OpenAI
|
7 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
8 |
+
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex, StorageContext
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
10 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
11 |
import qdrant_client
|
12 |
|
13 |
+
# Set your OpenAI API key from environment variable
|
14 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
15 |
+
if not openai_api_key:
|
16 |
+
raise ValueError("Please set your OPENAI_API_KEY environment variable.")
|
17 |
+
|
18 |
+
# Define a system prompt as a global constant
|
19 |
+
SYSTEM_PROMPT = (
|
20 |
+
"You are an AI assistant who answers the user questions, "
|
21 |
+
"use the schema fields to generate appropriate and valid json queries"
|
22 |
)
|
23 |
|
24 |
+
# Configure the LLM and embedding models
|
25 |
+
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
|
26 |
+
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
27 |
+
|
28 |
+
# Load initial documents from a directory called "new_file"
|
29 |
+
documents = SimpleDirectoryReader("new_file").load_data()
|
30 |
+
|
31 |
+
# Set up the Qdrant vector store (using an in-memory collection for simplicity)
|
32 |
+
client = qdrant_client.QdrantClient(location=":memory:")
|
33 |
vector_store = QdrantVectorStore(
|
34 |
+
collection_name="paper",
|
35 |
client=client,
|
36 |
enable_hybrid=True,
|
37 |
batch_size=20,
|
38 |
)
|
|
|
39 |
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
40 |
|
41 |
+
# Build the initial index and query/chat engines
|
42 |
+
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
43 |
+
chat_memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
chat_engine = index.as_chat_engine(
|
45 |
chat_mode="context",
|
46 |
+
memory=chat_memory,
|
47 |
+
system_prompt=SYSTEM_PROMPT,
|
|
|
|
|
|
|
48 |
)
|
49 |
|
50 |
+
def process_uploaded_file(uploaded_file):
|
51 |
+
"""
|
52 |
+
Process the uploaded file:
|
53 |
+
1. Save the file to an "uploads" folder.
|
54 |
+
2. Copy it to a temporary folder ("temp_upload") to load using SimpleDirectoryReader.
|
55 |
+
3. Extend the global documents list and rebuild the index and chat engine.
|
56 |
+
"""
|
57 |
+
if uploaded_file is None:
|
58 |
+
return "No file uploaded."
|
59 |
+
|
60 |
+
# 'uploaded_file' is a temporary file path provided by Gradio.
|
61 |
+
file_name = os.path.basename(uploaded_file)
|
62 |
+
uploads_dir = "uploads"
|
63 |
+
os.makedirs(uploads_dir, exist_ok=True)
|
64 |
+
dest_path = os.path.join(uploads_dir, file_name)
|
65 |
+
shutil.copy(uploaded_file, dest_path)
|
66 |
+
|
67 |
+
# Prepare a temporary directory to read the file
|
68 |
+
temp_dir = "temp_upload"
|
69 |
+
os.makedirs(temp_dir, exist_ok=True)
|
70 |
+
# Clear previous files in temp_dir (optional, to avoid mixing files)
|
71 |
+
for f in os.listdir(temp_dir):
|
72 |
+
os.remove(os.path.join(temp_dir, f))
|
73 |
+
shutil.copy(dest_path, temp_dir)
|
74 |
+
|
75 |
+
# Load the new document(s) from the temporary folder
|
76 |
+
new_docs = SimpleDirectoryReader(temp_dir).load_data()
|
77 |
+
|
78 |
+
# Update the global documents list and rebuild the index and chat engine
|
79 |
+
global documents, index, chat_engine
|
80 |
+
documents.extend(new_docs)
|
81 |
+
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
82 |
+
chat_engine = index.as_chat_engine(
|
83 |
+
chat_mode="context",
|
84 |
+
memory=chat_memory,
|
85 |
+
system_prompt=SYSTEM_PROMPT,
|
86 |
+
)
|
87 |
+
|
88 |
+
return f"File '{file_name}' processed and added to index."
|
89 |
|
|
|
|
|
|
|
|
|
90 |
def chat_with_ai(user_input, chat_history):
|
91 |
+
"""
|
92 |
+
Send the user input to the chat engine and update the conversation history.
|
93 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
94 |
response = chat_engine.chat(user_input)
|
95 |
+
# Collect reference filenames from the response (if available)
|
96 |
references = response.source_nodes
|
97 |
+
ref = []
|
98 |
+
for node in references:
|
99 |
+
if "file_name" in node.metadata and node.metadata["file_name"] not in ref:
|
100 |
+
ref.append(node.metadata["file_name"])
|
101 |
+
# Create a complete response string with references if present
|
102 |
+
complete_response = str(response)
|
103 |
+
if ref:
|
104 |
+
complete_response += "\n\nReferences: " + ", ".join(ref)
|
105 |
+
chat_history.append((user_input, complete_response))
|
|
|
|
|
|
|
106 |
return chat_history, ""
|
107 |
|
108 |
def clear_history():
|
109 |
return [], ""
|
110 |
|
111 |
def gradio_chatbot():
|
112 |
+
"""
|
113 |
+
Create a Gradio interface with two tabs:
|
114 |
+
- "Chat" for interacting with the chat engine.
|
115 |
+
- "Upload" for uploading new files to update the index.
|
116 |
+
"""
|
117 |
with gr.Blocks() as demo:
|
118 |
+
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
|
119 |
+
|
120 |
+
with gr.Tab("Chat"):
|
121 |
+
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
|
122 |
+
user_input = gr.Textbox(
|
123 |
+
placeholder="Ask a question...", label="Enter your question"
|
124 |
+
)
|
125 |
+
submit_button = gr.Button("Send")
|
126 |
+
btn_clear = gr.Button("Delete Context")
|
127 |
+
chat_history = gr.State([])
|
128 |
+
submit_button.click(chat_with_ai, inputs=[user_input, chat_history],
|
129 |
+
outputs=[chatbot, user_input])
|
130 |
+
user_input.submit(chat_with_ai, inputs=[user_input, chat_history],
|
131 |
+
outputs=[chatbot, user_input])
|
132 |
+
btn_clear.click(fn=clear_history, outputs=[chatbot, user_input])
|
133 |
+
|
134 |
+
with gr.Tab("Upload"):
|
135 |
+
gr.Markdown("### Upload a file to add its content to the index")
|
136 |
+
file_upload = gr.File(label="Choose a file")
|
137 |
+
upload_button = gr.Button("Upload and Process")
|
138 |
+
upload_status = gr.Textbox(label="Upload Status")
|
139 |
+
upload_button.click(process_uploaded_file, inputs=[file_upload], outputs=[upload_status])
|
140 |
+
|
141 |
return demo
|
142 |
|
143 |
+
if __name__ == "__main__":
|
144 |
+
gradio_chatbot().launch(debug=True)
|