Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,87 @@
|
|
1 |
|
2 |
-
|
3 |
-
from
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from llama_index.core import Settings
|
7 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
-
from llama_index.core import ServiceContext
|
9 |
-
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
10 |
-
|
11 |
-
documents = SimpleDirectoryReader('files').load_data()
|
12 |
-
|
13 |
-
system_prompt="""
|
14 |
-
You are a Q&A assistant. Your goal is to answer questions as
|
15 |
-
accurately as possible based on the instructions and context provided.
|
16 |
-
"""
|
17 |
-
|
18 |
-
embed_model= HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
19 |
-
|
20 |
-
llm = HuggingFaceLLM(
|
21 |
-
context_window=4096,
|
22 |
-
max_new_tokens=256,
|
23 |
-
generate_kwargs={"temperature": 0.1, "do_sample": True},
|
24 |
-
system_prompt=system_prompt,
|
25 |
-
tokenizer_name="anasmkh/new_customized_llama3.1_8b",
|
26 |
-
model_name="anasmkh/new_customized_llama3.1_8b",
|
27 |
-
device_map="auto",
|
28 |
-
model_kwargs={"torch_dtype": torch.float16 }
|
29 |
-
)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
Settings.embed_model =embed_model
|
36 |
-
# Settings.node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
|
37 |
-
Settings.num_output = 250
|
38 |
-
Settings.context_window = 3900
|
39 |
|
40 |
index = VectorStoreIndex.from_documents(
|
41 |
-
documents,
|
|
|
42 |
)
|
43 |
|
44 |
-
query_engine = index.as_query_engine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
46 |
|
|
|
47 |
|
|
|
48 |
|
49 |
-
|
50 |
-
history = history or []
|
51 |
-
history.append({"role": "user", "content": message})
|
52 |
-
response=query_engine.query(message)
|
53 |
-
# response = generator(history)[-1]["generated_text"]
|
54 |
-
history.append({"role": "assistant", "content": response})
|
55 |
-
return history
|
56 |
|
57 |
-
|
58 |
-
chatbot = gr.Chatbot()
|
59 |
-
message = gr.Textbox()
|
60 |
-
clear = gr.ClearButton([message, chatbot])
|
61 |
|
62 |
-
|
63 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
64 |
|
65 |
-
|
|
|
1 |
|
2 |
+
import os
|
3 |
+
from getpass import getpass
|
4 |
+
|
5 |
+
os.environ["OPENAI_API_KEY"] = getpass("Enter your OpenAI API key: ")
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
from llama_index.llms.openai import OpenAI
|
11 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
12 |
from llama_index.core import Settings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
Settings.llm = OpenAI(model="gpt-3.5-turbo",temperature=0.4)
|
15 |
+
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
16 |
+
|
17 |
+
from llama_index.core import SimpleDirectoryReader
|
18 |
+
|
19 |
+
documents = SimpleDirectoryReader("/content/new_files").load_data()
|
20 |
|
21 |
+
from llama_index.core import VectorStoreIndex, StorageContext
|
22 |
+
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
23 |
+
import qdrant_client
|
24 |
|
25 |
+
client = qdrant_client.QdrantClient(
|
26 |
+
location=":memory:",
|
27 |
+
)
|
28 |
+
|
29 |
+
vector_store = QdrantVectorStore(
|
30 |
+
collection_name = "paper",
|
31 |
+
client=client,
|
32 |
+
enable_hybrid=True,
|
33 |
+
batch_size=20,
|
34 |
+
)
|
35 |
|
36 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
|
|
|
|
|
|
|
|
37 |
|
38 |
index = VectorStoreIndex.from_documents(
|
39 |
+
documents,
|
40 |
+
storage_context=storage_context,
|
41 |
)
|
42 |
|
43 |
+
query_engine = index.as_query_engine(
|
44 |
+
vector_store_query_mode="hybrid"
|
45 |
+
)
|
46 |
+
|
47 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
48 |
+
|
49 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
50 |
+
|
51 |
+
chat_engine = index.as_chat_engine(
|
52 |
+
chat_mode="context",
|
53 |
+
memory=memory,
|
54 |
+
system_prompt=(
|
55 |
+
"You are an AI assistant who answers the user questions"
|
56 |
+
),
|
57 |
+
)
|
58 |
+
|
59 |
+
import gradio as gr
|
60 |
+
def chat_with_ai(user_input, chat_history):
|
61 |
+
response = chat_engine.chat(user_input)
|
62 |
+
|
63 |
+
chat_history = chat_history + [(user_input, str(response))]
|
64 |
+
|
65 |
+
return chat_history, ""
|
66 |
+
|
67 |
+
|
68 |
+
def gradio_chatbot():
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("# Gradio Chat Interface for LlamaIndex")
|
71 |
|
72 |
+
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
|
73 |
+
user_input = gr.Textbox(
|
74 |
+
placeholder="Ask a question...", label="Enter your question"
|
75 |
+
)
|
76 |
|
77 |
+
submit_button = gr.Button("Send")
|
78 |
|
79 |
+
chat_history = gr.State([])
|
80 |
|
81 |
+
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
|
|
|
|
|
|
84 |
|
85 |
+
return demo
|
|
|
86 |
|
87 |
+
gradio_chatbot().launch(debug=True)
|