Update app.py
Browse files
app.py
CHANGED
@@ -1,174 +1,119 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
# Importing LlamaIndex components
|
7 |
from llama_index.llms.openai import OpenAI
|
8 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
9 |
-
from llama_index.core import Settings
|
10 |
-
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
11 |
-
from llama_index.core.memory import ChatMemoryBuffer
|
12 |
-
import qdrant_client
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
# =============================================================================
|
17 |
|
18 |
-
|
19 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
20 |
-
if not openai_api_key:
|
21 |
-
raise ValueError("Please set your OPENAI_API_KEY environment variable.")
|
22 |
|
23 |
-
|
24 |
-
SYSTEM_PROMPT = (
|
25 |
-
"You are an AI assistant who answers the user questions, "
|
26 |
-
"use the schema fields to generate appropriate and valid json queries"
|
27 |
-
)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
else:
|
37 |
-
documents = []
|
38 |
|
39 |
-
# Set up the Qdrant vector store (using an in-memory collection for simplicity)
|
40 |
-
client = qdrant_client.QdrantClient(location=":memory:")
|
41 |
vector_store = QdrantVectorStore(
|
42 |
-
collection_name="paper",
|
43 |
client=client,
|
44 |
enable_hybrid=True,
|
45 |
batch_size=20,
|
46 |
)
|
|
|
47 |
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
chat_engine = index.as_chat_engine(
|
53 |
chat_mode="context",
|
54 |
-
memory=
|
55 |
-
system_prompt=
|
|
|
|
|
|
|
56 |
)
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
#
|
77 |
-
|
78 |
-
dest_path = os.path.join(uploads_dir, file_name)
|
79 |
-
with open(dest_path, "wb") as f:
|
80 |
-
f.write(uploaded_file.getbuffer())
|
81 |
-
|
82 |
-
# Prepare a temporary directory for processing the file
|
83 |
-
temp_dir = "temp_upload"
|
84 |
-
os.makedirs(temp_dir, exist_ok=True)
|
85 |
-
# Clear any existing file in temp_upload directory
|
86 |
-
for f_name in os.listdir(temp_dir):
|
87 |
-
os.remove(os.path.join(temp_dir, f_name))
|
88 |
-
shutil.copy(dest_path, temp_dir)
|
89 |
-
|
90 |
-
# Load new document(s) from the temporary folder using SimpleDirectoryReader
|
91 |
-
new_docs = SimpleDirectoryReader(temp_dir).load_data()
|
92 |
-
|
93 |
-
# Update global documents and rebuild the index and chat engine
|
94 |
-
global documents, index, chat_engine
|
95 |
-
documents.extend(new_docs)
|
96 |
-
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
97 |
-
chat_engine = index.as_chat_engine(
|
98 |
-
chat_mode="context",
|
99 |
-
memory=chat_memory,
|
100 |
-
system_prompt=SYSTEM_PROMPT,
|
101 |
-
)
|
102 |
-
|
103 |
-
return f"File '{file_name}' processed and added to the index."
|
104 |
-
|
105 |
-
def chat_with_ai(user_input: str) -> str:
|
106 |
-
"""
|
107 |
-
Send user input to the chat engine and return the response.
|
108 |
-
"""
|
109 |
response = chat_engine.chat(user_input)
|
110 |
-
# Extract references from the response (if any)
|
111 |
references = response.source_nodes
|
112 |
-
ref = []
|
113 |
-
for
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
if st.button("Send") and user_input:
|
151 |
-
with st.spinner("Processing..."):
|
152 |
-
response = chat_with_ai(user_input)
|
153 |
-
st.session_state["chat_history"].append((user_input, response))
|
154 |
-
st.experimental_rerun() # Refresh the page to show updated history
|
155 |
-
|
156 |
-
# Button to clear the conversation history
|
157 |
-
if st.button("Clear History"):
|
158 |
-
st.session_state["chat_history"] = []
|
159 |
-
st.experimental_rerun()
|
160 |
-
|
161 |
-
# -----------------------------------------------------------------------------
|
162 |
-
# Upload Tab
|
163 |
-
# -----------------------------------------------------------------------------
|
164 |
-
with tab2:
|
165 |
-
st.header("Upload a File")
|
166 |
-
uploaded_file = st.file_uploader("Choose a file to upload", type=["txt", "pdf", "doc", "docx", "csv", "xlsx"])
|
167 |
-
if st.button("Upload and Process"):
|
168 |
-
if uploaded_file is not None:
|
169 |
-
with st.spinner("Uploading and processing file..."):
|
170 |
-
status = process_uploaded_file(uploaded_file)
|
171 |
-
st.success(status)
|
172 |
-
else:
|
173 |
-
st.error("No file uploaded.")
|
174 |
|
|
|
|
1 |
import os
|
2 |
+
from getpass import getpass
|
3 |
+
|
4 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
5 |
+
openai_api_key = openai_api_key
|
6 |
+
|
7 |
|
|
|
8 |
from llama_index.llms.openai import OpenAI
|
9 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
10 |
+
from llama_index.core import Settings
|
|
|
|
|
|
|
11 |
|
12 |
+
Settings.llm = OpenAI(model="gpt-3.5-turbo",temperature=0.4)
|
13 |
+
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
|
|
14 |
|
15 |
+
from llama_index.core import SimpleDirectoryReader
|
|
|
|
|
|
|
16 |
|
17 |
+
documents = SimpleDirectoryReader("new_file").load_data()
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
from llama_index.core import VectorStoreIndex, StorageContext
|
20 |
+
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
21 |
+
import qdrant_client
|
22 |
|
23 |
+
client = qdrant_client.QdrantClient(
|
24 |
+
location=":memory:",
|
25 |
+
)
|
|
|
|
|
26 |
|
|
|
|
|
27 |
vector_store = QdrantVectorStore(
|
28 |
+
collection_name = "paper",
|
29 |
client=client,
|
30 |
enable_hybrid=True,
|
31 |
batch_size=20,
|
32 |
)
|
33 |
+
|
34 |
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
35 |
|
36 |
+
index = VectorStoreIndex.from_documents(
|
37 |
+
documents,
|
38 |
+
storage_context=storage_context,
|
39 |
+
)
|
40 |
+
|
41 |
+
query_engine = index.as_query_engine(
|
42 |
+
vector_store_query_mode="hybrid"
|
43 |
+
)
|
44 |
+
|
45 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
46 |
+
|
47 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
48 |
+
|
49 |
chat_engine = index.as_chat_engine(
|
50 |
chat_mode="context",
|
51 |
+
memory=memory,
|
52 |
+
system_prompt=(
|
53 |
+
"""You are an AI assistant who answers the user questions,
|
54 |
+
use the schema fields to generate appriopriate and valid json queries"""
|
55 |
+
),
|
56 |
)
|
57 |
|
58 |
+
# def is_greeting(user_input):
|
59 |
+
|
60 |
+
# greetings = ["hello", "hi", "hey", "good morning", "good afternoon", "good evening", "greetings"]
|
61 |
+
# user_input_lower = user_input.lower().strip()
|
62 |
+
# return any(greet in user_input_lower for greet in greetings)
|
63 |
+
# def is_bye(user_input):
|
64 |
+
|
65 |
+
# greetings = ["thanks", "thanks you", "thanks a lot", "good answer", "good bye", "bye bye"]
|
66 |
+
# user_input_lower = user_input.lower().strip()
|
67 |
+
# return any(greet in user_input_lower for greet in greetings)
|
68 |
+
import gradio as gr
|
69 |
+
def chat_with_ai(user_input, chat_history):
|
70 |
+
# if is_greeting(user_input):
|
71 |
+
# response = 'hi, how can i help you?'
|
72 |
+
# chat_history.append((user_input, response))
|
73 |
+
# return chat_history, ""
|
74 |
+
# elif is_bye(user_input):
|
75 |
+
# response = "you're wlocome"
|
76 |
+
# chat_history.append((user_input, response))
|
77 |
+
# return chat_history, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
response = chat_engine.chat(user_input)
|
|
|
79 |
references = response.source_nodes
|
80 |
+
ref,pages = [],[]
|
81 |
+
for i in range(len(references)):
|
82 |
+
if references[i].metadata['file_name'] not in ref:
|
83 |
+
ref.append(references[i].metadata['file_name'])
|
84 |
+
# pages.append(references[i].metadata['page_label'])
|
85 |
+
complete_response = str(response) + "\n\n"
|
86 |
+
if ref !=[] or pages!=[]:
|
87 |
+
chat_history.append((user_input, complete_response))
|
88 |
+
ref = []
|
89 |
+
elif ref==[] or pages==[]:
|
90 |
+
chat_history.append((user_input,str(response)))
|
91 |
+
|
92 |
+
return chat_history, ""
|
93 |
+
|
94 |
+
def clear_history():
|
95 |
+
return [], ""
|
96 |
+
|
97 |
+
def gradio_chatbot():
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
gr.Markdown("# Chat Interface for LlamaIndex")
|
100 |
+
|
101 |
+
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
|
102 |
+
user_input = gr.Textbox(
|
103 |
+
placeholder="Ask a question...", label="Enter your question"
|
104 |
+
)
|
105 |
+
|
106 |
+
submit_button = gr.Button("Send")
|
107 |
+
btn_clear = gr.Button("Delete Context")
|
108 |
+
|
109 |
+
|
110 |
+
chat_history = gr.State([])
|
111 |
+
|
112 |
+
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
113 |
+
|
114 |
+
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
115 |
+
btn_clear.click(fn=clear_history, outputs=[chatbot, user_input])
|
116 |
+
|
117 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
gradio_chatbot().launch(debug=True)
|