Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
|
4 |
+
model_name = "anasmkh/customized_llama3.1_8b"
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
7 |
+
|
8 |
+
generator = pipeline(
|
9 |
+
"text-generation",
|
10 |
+
model=model,
|
11 |
+
tokenizer=tokenizer,
|
12 |
+
max_new_tokens=64,
|
13 |
+
temperature=1.5,
|
14 |
+
min_p=0.1
|
15 |
+
)
|
16 |
+
|
17 |
+
def generate_response(prompt):
|
18 |
+
messages = [
|
19 |
+
{"role": "user", "content": prompt},
|
20 |
+
]
|
21 |
+
response = generator(messages)[0]['generated_text']
|
22 |
+
return response.split("<|end_header_id|>")[1].strip()
|
23 |
+
|
24 |
+
demo = gr.Interface(
|
25 |
+
fn=generate_response,
|
26 |
+
inputs=gr.Textbox(lines=5, label="Enter your prompt"),
|
27 |
+
outputs=gr.Textbox(label="Model Response")
|
28 |
+
)
|
29 |
+
|
30 |
+
demo.launch()
|