Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,16 @@ from getpass import getpass
|
|
4 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
5 |
openai_api_key = openai_api_key
|
6 |
|
|
|
7 |
from llama_index.llms.openai import OpenAI
|
8 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
9 |
from llama_index.core import Settings
|
10 |
|
11 |
-
Settings.llm = OpenAI(model="gpt-3.5-turbo",
|
12 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
13 |
|
14 |
from llama_index.core import SimpleDirectoryReader
|
15 |
|
16 |
-
# Load initial documents
|
17 |
documents = SimpleDirectoryReader("new_file").load_data()
|
18 |
|
19 |
from llama_index.core import VectorStoreIndex, StorageContext
|
@@ -25,7 +25,7 @@ client = qdrant_client.QdrantClient(
|
|
25 |
)
|
26 |
|
27 |
vector_store = QdrantVectorStore(
|
28 |
-
collection_name="paper",
|
29 |
client=client,
|
30 |
enable_hybrid=True,
|
31 |
batch_size=20,
|
@@ -51,40 +51,49 @@ chat_engine = index.as_chat_engine(
|
|
51 |
memory=memory,
|
52 |
system_prompt=(
|
53 |
"""You are an AI assistant who answers the user questions,
|
54 |
-
use the schema fields to generate
|
55 |
),
|
56 |
)
|
57 |
|
58 |
-
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def chat_with_ai(user_input, chat_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
response = chat_engine.chat(user_input)
|
62 |
references = response.source_nodes
|
63 |
-
ref,
|
64 |
for i in range(len(references)):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
return chat_history, ""
|
75 |
|
76 |
def clear_history():
|
77 |
return [], ""
|
78 |
|
79 |
-
def upload_file(file):
|
80 |
-
# Save the uploaded file to the "new_file" directory
|
81 |
-
if not os.path.exists("new_file"):
|
82 |
-
os.makedirs("new_file")
|
83 |
-
file_path = os.path.join("new_file", file.name)
|
84 |
-
with open(file_path, "wb") as f:
|
85 |
-
f.write(file.read())
|
86 |
-
return f"File {file.name} uploaded successfully!"
|
87 |
-
|
88 |
def gradio_chatbot():
|
89 |
with gr.Blocks() as demo:
|
90 |
gr.Markdown("# Chat Interface for LlamaIndex")
|
@@ -95,24 +104,15 @@ def gradio_chatbot():
|
|
95 |
)
|
96 |
|
97 |
submit_button = gr.Button("Send")
|
98 |
-
btn_clear = gr.Button("Delete Context")
|
99 |
-
|
100 |
-
# Add a file upload component
|
101 |
-
file_upload = gr.File(label="Upload a file")
|
102 |
|
103 |
-
# Add a button to handle file upload
|
104 |
-
upload_button = gr.Button("Upload File")
|
105 |
|
106 |
chat_history = gr.State([])
|
107 |
|
108 |
-
# Define the file upload action
|
109 |
-
upload_button.click(upload_file, inputs=file_upload, outputs=user_input)
|
110 |
-
|
111 |
-
# Define the chat interaction
|
112 |
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
113 |
|
114 |
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
115 |
-
btn_clear.click(fn=clear_history, outputs=[chatbot, user_input])
|
116 |
|
117 |
return demo
|
118 |
|
|
|
4 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
5 |
openai_api_key = openai_api_key
|
6 |
|
7 |
+
|
8 |
from llama_index.llms.openai import OpenAI
|
9 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
10 |
from llama_index.core import Settings
|
11 |
|
12 |
+
Settings.llm = OpenAI(model="gpt-3.5-turbo",temperature=0.4)
|
13 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
14 |
|
15 |
from llama_index.core import SimpleDirectoryReader
|
16 |
|
|
|
17 |
documents = SimpleDirectoryReader("new_file").load_data()
|
18 |
|
19 |
from llama_index.core import VectorStoreIndex, StorageContext
|
|
|
25 |
)
|
26 |
|
27 |
vector_store = QdrantVectorStore(
|
28 |
+
collection_name = "paper",
|
29 |
client=client,
|
30 |
enable_hybrid=True,
|
31 |
batch_size=20,
|
|
|
51 |
memory=memory,
|
52 |
system_prompt=(
|
53 |
"""You are an AI assistant who answers the user questions,
|
54 |
+
use the schema fields to generate appriopriate and valid json queries"""
|
55 |
),
|
56 |
)
|
57 |
|
58 |
+
# def is_greeting(user_input):
|
59 |
|
60 |
+
# greetings = ["hello", "hi", "hey", "good morning", "good afternoon", "good evening", "greetings"]
|
61 |
+
# user_input_lower = user_input.lower().strip()
|
62 |
+
# return any(greet in user_input_lower for greet in greetings)
|
63 |
+
# def is_bye(user_input):
|
64 |
+
|
65 |
+
# greetings = ["thanks", "thanks you", "thanks a lot", "good answer", "good bye", "bye bye"]
|
66 |
+
# user_input_lower = user_input.lower().strip()
|
67 |
+
# return any(greet in user_input_lower for greet in greetings)
|
68 |
+
import gradio as gr
|
69 |
def chat_with_ai(user_input, chat_history):
|
70 |
+
# if is_greeting(user_input):
|
71 |
+
# response = 'hi, how can i help you?'
|
72 |
+
# chat_history.append((user_input, response))
|
73 |
+
# return chat_history, ""
|
74 |
+
# elif is_bye(user_input):
|
75 |
+
# response = "you're wlocome"
|
76 |
+
# chat_history.append((user_input, response))
|
77 |
+
# return chat_history, ""
|
78 |
response = chat_engine.chat(user_input)
|
79 |
references = response.source_nodes
|
80 |
+
ref,pages = [],[]
|
81 |
for i in range(len(references)):
|
82 |
+
if references[i].metadata['file_name'] not in ref:
|
83 |
+
ref.append(references[i].metadata['file_name'])
|
84 |
+
# pages.append(references[i].metadata['page_label'])
|
85 |
+
complete_response = str(response) + "\n\n"
|
86 |
+
if ref !=[] or pages!=[]:
|
87 |
+
chat_history.append((user_input, complete_response))
|
88 |
+
ref = []
|
89 |
+
elif ref==[] or pages==[]:
|
90 |
+
chat_history.append((user_input,str(response)))
|
91 |
|
92 |
return chat_history, ""
|
93 |
|
94 |
def clear_history():
|
95 |
return [], ""
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
def gradio_chatbot():
|
98 |
with gr.Blocks() as demo:
|
99 |
gr.Markdown("# Chat Interface for LlamaIndex")
|
|
|
104 |
)
|
105 |
|
106 |
submit_button = gr.Button("Send")
|
107 |
+
btn_clear = gr.Button("Delete Context")
|
|
|
|
|
|
|
108 |
|
|
|
|
|
109 |
|
110 |
chat_history = gr.State([])
|
111 |
|
|
|
|
|
|
|
|
|
112 |
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
113 |
|
114 |
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
115 |
+
btn_clear.click(fn=clear_history, outputs=[chatbot, user_input])
|
116 |
|
117 |
return demo
|
118 |
|