Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
|
|
4 |
import qdrant_client
|
5 |
from getpass import getpass
|
6 |
|
7 |
-
# Set your OpenAI API key from
|
8 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
9 |
|
10 |
# -------------------------------------------------------
|
@@ -33,38 +33,138 @@ client = None
|
|
33 |
vector_store = None
|
34 |
storage_context = None
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# -------------------------------------------------------
|
37 |
-
# Function to process uploaded files and
|
38 |
# -------------------------------------------------------
|
39 |
def process_upload(files):
|
40 |
"""
|
41 |
-
Accepts a list of uploaded file paths, saves them to a
|
42 |
-
loads
|
43 |
"""
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
# Clear any existing files in the folder.
|
49 |
-
for f in os.listdir(upload_dir):
|
50 |
-
os.remove(os.path.join(upload_dir, f))
|
51 |
-
|
52 |
-
# 'files' is a list of file paths (Gradio's File component with type="file")
|
53 |
for file_path in files:
|
54 |
file_name = os.path.basename(file_path)
|
55 |
dest = os.path.join(upload_dir, file_name)
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import qdrant_client
|
5 |
from getpass import getpass
|
6 |
|
7 |
+
# Set your OpenAI API key from environment variables.
|
8 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
9 |
|
10 |
# -------------------------------------------------------
|
|
|
33 |
vector_store = None
|
34 |
storage_context = None
|
35 |
|
36 |
+
# Use a persistent folder to keep uploaded files.
|
37 |
+
upload_dir = "uploaded_files"
|
38 |
+
if not os.path.exists(upload_dir):
|
39 |
+
os.makedirs(upload_dir)
|
40 |
+
|
41 |
+
# A set to track which files have already been processed.
|
42 |
+
processed_files = set()
|
43 |
+
|
44 |
# -------------------------------------------------------
|
45 |
+
# Function to process uploaded files and update the index.
|
46 |
# -------------------------------------------------------
|
47 |
def process_upload(files):
|
48 |
"""
|
49 |
+
Accepts a list of uploaded file paths, saves them to a persistent folder,
|
50 |
+
loads only new documents, and builds (or updates) the vector index and chat engine.
|
51 |
"""
|
52 |
+
global client, vector_store, storage_context, index, query_engine, memory, chat_engine, processed_files
|
53 |
+
|
54 |
+
new_file_paths = []
|
55 |
+
# Loop over each uploaded file.
|
|
|
|
|
|
|
|
|
|
|
56 |
for file_path in files:
|
57 |
file_name = os.path.basename(file_path)
|
58 |
dest = os.path.join(upload_dir, file_name)
|
59 |
+
# If the file is not already in our folder, copy it.
|
60 |
+
if file_name not in processed_files:
|
61 |
+
if not os.path.exists(dest):
|
62 |
+
shutil.copy(file_path, dest)
|
63 |
+
new_file_paths.append(dest)
|
64 |
+
processed_files.add(file_name)
|
65 |
+
|
66 |
+
if not new_file_paths:
|
67 |
+
return "No new documents to add."
|
68 |
+
|
69 |
+
# Load only the new documents.
|
70 |
+
new_documents = SimpleDirectoryReader(input_files=new_file_paths).load_data()
|
71 |
+
|
72 |
+
# If this is the first upload, build the index from scratch.
|
73 |
+
if index is None:
|
74 |
+
# (Here we use an in-memory Qdrant client. Change ":memory:" to a persistent path if needed.)
|
75 |
+
client = qdrant_client.QdrantClient(location=":memory:")
|
76 |
+
vector_store = QdrantVectorStore(
|
77 |
+
collection_name="paper",
|
78 |
+
client=client,
|
79 |
+
enable_hybrid=True,
|
80 |
+
batch_size=20,
|
81 |
+
)
|
82 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
83 |
+
index = VectorStoreIndex.from_documents(new_documents, storage_context=storage_context)
|
84 |
+
else:
|
85 |
+
# Otherwise, insert the new documents into the existing index.
|
86 |
+
index.insert_documents(new_documents)
|
87 |
+
|
88 |
+
# Reinitialize query and chat engines so they use the updated index.
|
89 |
+
query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
|
90 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
|
91 |
+
chat_engine = index.as_chat_engine(
|
92 |
+
chat_mode="context",
|
93 |
+
memory=memory,
|
94 |
+
system_prompt=(
|
95 |
+
"You are an AI assistant who answers the user questions, "
|
96 |
+
"use the schema fields to generate appropriate and valid json queries"
|
97 |
+
),
|
98 |
+
)
|
99 |
+
|
100 |
+
return "Documents uploaded and index updated successfully!"
|
101 |
+
|
102 |
+
# -------------------------------------------------------
|
103 |
+
# Chat function that uses the built chat engine.
|
104 |
+
# -------------------------------------------------------
|
105 |
+
def chat_with_ai(user_input, chat_history):
|
106 |
+
global chat_engine
|
107 |
+
# Check if the chat engine is initialized.
|
108 |
+
if chat_engine is None:
|
109 |
+
return chat_history, "Please upload documents first."
|
110 |
|
111 |
+
response = chat_engine.chat(user_input)
|
112 |
+
references = response.source_nodes
|
113 |
+
ref = []
|
114 |
|
115 |
+
# Extract file names from the source nodes (if available)
|
116 |
+
for node in references:
|
117 |
+
file_name = node.metadata.get('file_name')
|
118 |
+
if file_name and file_name not in ref:
|
119 |
+
ref.append(file_name)
|
120 |
|
121 |
+
complete_response = str(response) + "\n\n"
|
122 |
+
chat_history.append((user_input, complete_response))
|
123 |
+
return chat_history, ""
|
124 |
+
|
125 |
+
# -------------------------------------------------------
|
126 |
+
# Function to clear the chat history.
|
127 |
+
# -------------------------------------------------------
|
128 |
+
def clear_history():
|
129 |
+
return [], ""
|
130 |
+
|
131 |
+
# -------------------------------------------------------
|
132 |
+
# Build the Gradio interface.
|
133 |
+
# -------------------------------------------------------
|
134 |
+
def gradio_interface():
|
135 |
+
with gr.Blocks() as demo:
|
136 |
+
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
|
137 |
+
|
138 |
+
with gr.Tab("Upload Documents"):
|
139 |
+
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
|
140 |
+
# The file upload widget: we specify allowed file types.
|
141 |
+
file_upload = gr.File(
|
142 |
+
label="Upload Files",
|
143 |
+
file_count="multiple",
|
144 |
+
file_types=[".pdf", ".csv", ".txt", ".xlsx", ".xls", ".doc", ".docx"],
|
145 |
+
type="filepath" # returns file paths
|
146 |
+
)
|
147 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
148 |
+
upload_button = gr.Button("Process Upload")
|
149 |
+
|
150 |
+
upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
|
151 |
+
|
152 |
+
with gr.Tab("Chat"):
|
153 |
+
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
|
154 |
+
user_input = gr.Textbox(
|
155 |
+
placeholder="Ask a question...", label="Enter your question"
|
156 |
+
)
|
157 |
+
submit_button = gr.Button("Send")
|
158 |
+
btn_clear = gr.Button("Clear History")
|
159 |
+
|
160 |
+
# A State to hold the chat history.
|
161 |
+
chat_history = gr.State([])
|
162 |
+
|
163 |
+
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
164 |
+
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
165 |
+
btn_clear.click(clear_history, outputs=[chatbot, user_input])
|
166 |
+
|
167 |
+
return demo
|
168 |
+
|
169 |
+
# Launch the Gradio app.
|
170 |
+
gradio_interface().launch(debug=True)
|