Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,9 @@ import gradio as gr
|
|
4 |
import qdrant_client
|
5 |
from getpass import getpass
|
6 |
|
7 |
-
|
8 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
9 |
|
10 |
-
# -------------------------------------------------------
|
11 |
-
# Configure LlamaIndex with OpenAI LLM and Embeddings
|
12 |
-
# -------------------------------------------------------
|
13 |
from llama_index.llms.openai import OpenAI
|
14 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
15 |
from llama_index.core import Settings
|
@@ -17,14 +14,11 @@ from llama_index.core import Settings
|
|
17 |
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
|
18 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
19 |
|
20 |
-
# -------------------------------------------------------
|
21 |
-
# Import document readers, index, vector store, memory, etc.
|
22 |
-
# -------------------------------------------------------
|
23 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
|
24 |
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
25 |
from llama_index.core.memory import ChatMemoryBuffer
|
26 |
|
27 |
-
|
28 |
chat_engine = None
|
29 |
index = None
|
30 |
query_engine = None
|
@@ -33,31 +27,21 @@ client = None
|
|
33 |
vector_store = None
|
34 |
storage_context = None
|
35 |
|
36 |
-
|
37 |
-
# Function to process uploaded files and build the index.
|
38 |
-
# -------------------------------------------------------
|
39 |
def process_upload(files):
|
40 |
-
|
41 |
-
Accepts a list of uploaded file paths, saves them to a local folder,
|
42 |
-
loads them as documents, and builds the vector index and chat engine.
|
43 |
-
This version accumulates files, so if you upload more files later,
|
44 |
-
they are added to the existing document set.
|
45 |
-
"""
|
46 |
upload_dir = "uploaded_files"
|
47 |
if not os.path.exists(upload_dir):
|
48 |
os.makedirs(upload_dir)
|
49 |
|
50 |
-
# Copy new files into the folder without clearing existing ones.
|
51 |
for file_path in files:
|
52 |
file_name = os.path.basename(file_path)
|
53 |
dest = os.path.join(upload_dir, file_name)
|
54 |
if not os.path.exists(dest):
|
55 |
shutil.copy(file_path, dest)
|
56 |
|
57 |
-
# Load documents from the saved folder.
|
58 |
documents = SimpleDirectoryReader(upload_dir).load_data()
|
59 |
|
60 |
-
# Build the index and chat engine using Qdrant as the vector store.
|
61 |
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
|
62 |
client = qdrant_client.QdrantClient(location=":memory:")
|
63 |
|
@@ -80,19 +64,15 @@ def process_upload(files):
|
|
80 |
chat_mode="context",
|
81 |
memory=memory,
|
82 |
system_prompt=(
|
83 |
-
"You are an AI assistant who answers the user questions
|
84 |
-
"use the schema fields to generate appropriate and valid json queries"
|
85 |
),
|
86 |
)
|
87 |
|
88 |
return "Documents uploaded and index built successfully!"
|
89 |
|
90 |
-
|
91 |
-
# Chat function that uses the built chat engine.
|
92 |
-
# -------------------------------------------------------
|
93 |
def chat_with_ai(user_input, chat_history):
|
94 |
global chat_engine
|
95 |
-
# Check if the chat engine is initialized.
|
96 |
if chat_engine is None:
|
97 |
return chat_history, "Please upload documents first."
|
98 |
|
@@ -100,7 +80,6 @@ def chat_with_ai(user_input, chat_history):
|
|
100 |
references = response.source_nodes
|
101 |
ref, pages = [], []
|
102 |
|
103 |
-
# Extract file names from the source nodes (if available)
|
104 |
for node in references:
|
105 |
file_name = node.metadata.get('file_name')
|
106 |
if file_name and file_name not in ref:
|
@@ -113,20 +92,15 @@ def chat_with_ai(user_input, chat_history):
|
|
113 |
chat_history.append((user_input, str(response)))
|
114 |
return chat_history, ""
|
115 |
|
116 |
-
|
117 |
-
# Function to clear the chat history.
|
118 |
-
# -------------------------------------------------------
|
119 |
def clear_history():
|
120 |
return [], ""
|
121 |
|
122 |
-
|
123 |
-
# Build the Gradio interface.
|
124 |
-
# -------------------------------------------------------
|
125 |
def gradio_interface():
|
126 |
with gr.Blocks() as demo:
|
127 |
-
gr.Markdown("#
|
128 |
|
129 |
-
# Use Tabs to separate the file upload and chat interfaces.
|
130 |
with gr.Tab("Upload Documents"):
|
131 |
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
|
132 |
# The file upload widget: we specify allowed file types.
|
@@ -142,12 +116,12 @@ def gradio_interface():
|
|
142 |
upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
|
143 |
|
144 |
with gr.Tab("Chat"):
|
145 |
-
chatbot = gr.Chatbot(label="
|
146 |
user_input = gr.Textbox(
|
147 |
placeholder="Ask a question...", label="Enter your question"
|
148 |
)
|
149 |
submit_button = gr.Button("Send")
|
150 |
-
btn_clear = gr.Button("
|
151 |
|
152 |
# A State to hold the chat history.
|
153 |
chat_history = gr.State([])
|
|
|
4 |
import qdrant_client
|
5 |
from getpass import getpass
|
6 |
|
7 |
+
|
8 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
9 |
|
|
|
|
|
|
|
10 |
from llama_index.llms.openai import OpenAI
|
11 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
12 |
from llama_index.core import Settings
|
|
|
14 |
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
|
15 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
|
16 |
|
|
|
|
|
|
|
17 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
|
18 |
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
19 |
from llama_index.core.memory import ChatMemoryBuffer
|
20 |
|
21 |
+
|
22 |
chat_engine = None
|
23 |
index = None
|
24 |
query_engine = None
|
|
|
27 |
vector_store = None
|
28 |
storage_context = None
|
29 |
|
30 |
+
|
|
|
|
|
31 |
def process_upload(files):
|
32 |
+
|
|
|
|
|
|
|
|
|
|
|
33 |
upload_dir = "uploaded_files"
|
34 |
if not os.path.exists(upload_dir):
|
35 |
os.makedirs(upload_dir)
|
36 |
|
|
|
37 |
for file_path in files:
|
38 |
file_name = os.path.basename(file_path)
|
39 |
dest = os.path.join(upload_dir, file_name)
|
40 |
if not os.path.exists(dest):
|
41 |
shutil.copy(file_path, dest)
|
42 |
|
|
|
43 |
documents = SimpleDirectoryReader(upload_dir).load_data()
|
44 |
|
|
|
45 |
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
|
46 |
client = qdrant_client.QdrantClient(location=":memory:")
|
47 |
|
|
|
64 |
chat_mode="context",
|
65 |
memory=memory,
|
66 |
system_prompt=(
|
67 |
+
"You are an AI assistant who answers the user questions"
|
|
|
68 |
),
|
69 |
)
|
70 |
|
71 |
return "Documents uploaded and index built successfully!"
|
72 |
|
73 |
+
|
|
|
|
|
74 |
def chat_with_ai(user_input, chat_history):
|
75 |
global chat_engine
|
|
|
76 |
if chat_engine is None:
|
77 |
return chat_history, "Please upload documents first."
|
78 |
|
|
|
80 |
references = response.source_nodes
|
81 |
ref, pages = [], []
|
82 |
|
|
|
83 |
for node in references:
|
84 |
file_name = node.metadata.get('file_name')
|
85 |
if file_name and file_name not in ref:
|
|
|
92 |
chat_history.append((user_input, str(response)))
|
93 |
return chat_history, ""
|
94 |
|
95 |
+
|
|
|
|
|
96 |
def clear_history():
|
97 |
return [], ""
|
98 |
|
99 |
+
|
|
|
|
|
100 |
def gradio_interface():
|
101 |
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("# AI Assistant")
|
103 |
|
|
|
104 |
with gr.Tab("Upload Documents"):
|
105 |
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
|
106 |
# The file upload widget: we specify allowed file types.
|
|
|
116 |
upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
|
117 |
|
118 |
with gr.Tab("Chat"):
|
119 |
+
chatbot = gr.Chatbot(label="Chatbot Assistant")
|
120 |
user_input = gr.Textbox(
|
121 |
placeholder="Ask a question...", label="Enter your question"
|
122 |
)
|
123 |
submit_button = gr.Button("Send")
|
124 |
+
btn_clear = gr.Button("Restart")
|
125 |
|
126 |
# A State to hold the chat history.
|
127 |
chat_history = gr.State([])
|