Spaces:
Sleeping
Sleeping
add app file
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import tensorflow as tf
|
5 |
+
import joblib
|
6 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
7 |
+
|
8 |
+
try:
|
9 |
+
model = tf.keras.models.load_model("banking_model.keras")
|
10 |
+
scaler = joblib.load("scaler.pkl")
|
11 |
+
label_encoders = joblib.load("label_encoders.pkl")
|
12 |
+
except Exception as e:
|
13 |
+
st.error(f"Error loading model or preprocessors: {e}")
|
14 |
+
st.stop()
|
15 |
+
|
16 |
+
|
17 |
+
st.title("📊 Banking App")
|
18 |
+
st.write("Enter the feature values below to predict the classification stage.")
|
19 |
+
|
20 |
+
if not label_encoders:
|
21 |
+
st.error("Label encoders are empty. Make sure the model was trained correctly.")
|
22 |
+
st.stop()
|
23 |
+
|
24 |
+
numerical_inputs = {}
|
25 |
+
categorical_inputs = {}
|
26 |
+
|
27 |
+
try:
|
28 |
+
numerical_features = list(scaler.feature_names_in_)
|
29 |
+
categorical_features = list(label_encoders.keys())
|
30 |
+
except AttributeError:
|
31 |
+
st.error("Scaler or encoders are not properly loaded.")
|
32 |
+
st.stop()
|
33 |
+
|
34 |
+
for feature in numerical_features:
|
35 |
+
numerical_inputs[feature] = st.number_input(f"Enter {feature}", value=0.0)
|
36 |
+
|
37 |
+
for feature in categorical_features:
|
38 |
+
if label_encoders[feature].classes_.size > 0:
|
39 |
+
categorical_inputs[feature] = st.selectbox(f"Select {feature}", label_encoders[feature].classes_)
|
40 |
+
else:
|
41 |
+
st.error(f"Label encoder for {feature} is empty.")
|
42 |
+
st.stop()
|
43 |
+
|
44 |
+
|
45 |
+
if st.button("Predict"):
|
46 |
+
try:
|
47 |
+
for feature in categorical_inputs:
|
48 |
+
categorical_inputs[feature] = label_encoders[feature].transform([categorical_inputs[feature]])[0]
|
49 |
+
|
50 |
+
input_data = pd.DataFrame([{**numerical_inputs, **categorical_inputs}])
|
51 |
+
|
52 |
+
input_data[numerical_features] = scaler.transform(input_data[numerical_features])
|
53 |
+
|
54 |
+
prediction = model.predict(input_data)
|
55 |
+
predicted_class = np.argmax(prediction)
|
56 |
+
|
57 |
+
st.success(f"✅ Predicted Classification Stage: {predicted_class}")
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
st.error(f"Prediction error: {e}")
|