Update main.py
Browse files
main.py
CHANGED
@@ -49,8 +49,31 @@ qa_chain = RetrievalQA.from_llm(llm=local_llm, retriever=retriever)
|
|
49 |
|
50 |
|
51 |
def gradinterface(query,history):
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
demo = gr.ChatInterface(fn=gradinterface, title='OUR_OWN_BOT')
|
|
|
49 |
|
50 |
|
51 |
def gradinterface(query,history):
|
52 |
+
while True:
|
53 |
+
query = input("\nQuery: ")
|
54 |
+
if query == "exit":
|
55 |
+
break
|
56 |
+
if query.strip() == "":
|
57 |
+
continue
|
58 |
+
|
59 |
+
template = """Use the following pieces of context to answer the question at the end.
|
60 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
61 |
+
Use three sentences maximum and keep the answer as concise as possible.
|
62 |
+
{context}
|
63 |
+
Question: {question}
|
64 |
+
Helpful Answer:"""
|
65 |
+
|
66 |
+
QA_CHAIN_PROMPT = PromptTemplate(
|
67 |
+
input_variables=["context", "question"],
|
68 |
+
template=template,
|
69 |
+
)
|
70 |
+
qa_chain = RetrievalQA.from_chain_type(
|
71 |
+
local_llm,
|
72 |
+
retriever=vector.as_retriever(),
|
73 |
+
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
|
74 |
+
)
|
75 |
+
result = qa_chain({"query": query})
|
76 |
+
return result['result'].split(':')[-1].strip()
|
77 |
|
78 |
|
79 |
demo = gr.ChatInterface(fn=gradinterface, title='OUR_OWN_BOT')
|