Update main.py
Browse files
main.py
CHANGED
@@ -17,13 +17,13 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
17 |
|
18 |
|
19 |
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
model_id = "lamdao/lora-trained-xl-colab"
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
26 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
27 |
|
28 |
pipeline = pipeline(
|
29 |
"text-generation",
|
@@ -48,14 +48,14 @@ local_llm = HuggingFacePipeline(pipeline=pipeline)
|
|
48 |
loader = PyPDFLoader('bipolar.pdf')
|
49 |
# loader = TextLoader('info.txt')
|
50 |
document = loader.load()
|
51 |
-
text_spliter = CharacterTextSplitter(chunk_size=
|
52 |
texts = text_spliter.split_documents(document)
|
53 |
embedding = HuggingFaceInstructEmbeddings()
|
54 |
docsearch = Chroma.from_documents(texts, embedding, persist_directory='db')
|
55 |
|
56 |
retriever = docsearch.as_retriever(search_kwargs={"k": 3})
|
57 |
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
|
58 |
-
chain_type="
|
59 |
retriever=retriever,
|
60 |
return_source_documents=True)
|
61 |
# question = input('prompt: ')
|
@@ -66,7 +66,7 @@ def gradinterface(query,history):
|
|
66 |
return result['result']
|
67 |
|
68 |
|
69 |
-
demo = gr.ChatInterface(fn=gradinterface, title='
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
demo.launch(share=True)
|
|
|
17 |
|
18 |
|
19 |
#
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
21 |
+
|
22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
23 |
|
24 |
+
# model_id = "lamdao/lora-trained-xl-colab"
|
25 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id)
|
26 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id)
|
27 |
|
28 |
pipeline = pipeline(
|
29 |
"text-generation",
|
|
|
48 |
loader = PyPDFLoader('bipolar.pdf')
|
49 |
# loader = TextLoader('info.txt')
|
50 |
document = loader.load()
|
51 |
+
text_spliter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
|
52 |
texts = text_spliter.split_documents(document)
|
53 |
embedding = HuggingFaceInstructEmbeddings()
|
54 |
docsearch = Chroma.from_documents(texts, embedding, persist_directory='db')
|
55 |
|
56 |
retriever = docsearch.as_retriever(search_kwargs={"k": 3})
|
57 |
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
|
58 |
+
chain_type="stuff",
|
59 |
retriever=retriever,
|
60 |
return_source_documents=True)
|
61 |
# question = input('prompt: ')
|
|
|
66 |
return result['result']
|
67 |
|
68 |
|
69 |
+
demo = gr.ChatInterface(fn=gradinterface, title='OUR_BOT')
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
demo.launch(share=True)
|