anasmkh commited on
Commit
37ddf11
·
1 Parent(s): 7f45130

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +9 -9
main.py CHANGED
@@ -17,13 +17,13 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
17
 
18
 
19
  #
20
- # tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
21
- #
22
- # model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
23
 
24
- model_id = "lamdao/lora-trained-xl-colab"
25
- tokenizer = AutoTokenizer.from_pretrained(model_id)
26
- model = AutoModelForCausalLM.from_pretrained(model_id)
27
 
28
  pipeline = pipeline(
29
  "text-generation",
@@ -48,14 +48,14 @@ local_llm = HuggingFacePipeline(pipeline=pipeline)
48
  loader = PyPDFLoader('bipolar.pdf')
49
  # loader = TextLoader('info.txt')
50
  document = loader.load()
51
- text_spliter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
52
  texts = text_spliter.split_documents(document)
53
  embedding = HuggingFaceInstructEmbeddings()
54
  docsearch = Chroma.from_documents(texts, embedding, persist_directory='db')
55
 
56
  retriever = docsearch.as_retriever(search_kwargs={"k": 3})
57
  qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
58
- chain_type="map_reduce",
59
  retriever=retriever,
60
  return_source_documents=True)
61
  # question = input('prompt: ')
@@ -66,7 +66,7 @@ def gradinterface(query,history):
66
  return result['result']
67
 
68
 
69
- demo = gr.ChatInterface(fn=gradinterface, title='OUR_OWN_BOT')
70
 
71
  if __name__ == "__main__":
72
  demo.launch(share=True)
 
17
 
18
 
19
  #
20
+ tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
21
+
22
+ model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
23
 
24
+ # model_id = "lamdao/lora-trained-xl-colab"
25
+ # tokenizer = AutoTokenizer.from_pretrained(model_id)
26
+ # model = AutoModelForCausalLM.from_pretrained(model_id)
27
 
28
  pipeline = pipeline(
29
  "text-generation",
 
48
  loader = PyPDFLoader('bipolar.pdf')
49
  # loader = TextLoader('info.txt')
50
  document = loader.load()
51
+ text_spliter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
52
  texts = text_spliter.split_documents(document)
53
  embedding = HuggingFaceInstructEmbeddings()
54
  docsearch = Chroma.from_documents(texts, embedding, persist_directory='db')
55
 
56
  retriever = docsearch.as_retriever(search_kwargs={"k": 3})
57
  qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
58
+ chain_type="stuff",
59
  retriever=retriever,
60
  return_source_documents=True)
61
  # question = input('prompt: ')
 
66
  return result['result']
67
 
68
 
69
+ demo = gr.ChatInterface(fn=gradinterface, title='OUR_BOT')
70
 
71
  if __name__ == "__main__":
72
  demo.launch(share=True)