Update main.py
Browse files
main.py
CHANGED
@@ -1,50 +1,52 @@
|
|
1 |
-
from
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from langchain.
|
5 |
-
from transformers import pipeline, AutoModelForCausalLM
|
6 |
from langchain.llms import HuggingFacePipeline
|
7 |
-
from
|
8 |
-
import gradio as gr
|
9 |
-
from InstructorEmbedding import INSTRUCTOR
|
10 |
-
import torch
|
11 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
|
|
|
15 |
|
16 |
-
|
17 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
18 |
|
19 |
pipe = pipeline(
|
20 |
"text2text-generation",
|
21 |
model=model,
|
22 |
tokenizer=tokenizer,
|
23 |
-
max_length=
|
24 |
-
temperature=0.
|
25 |
-
top_p=0.
|
26 |
repetition_penalty=1.15,
|
27 |
do_sample=True
|
28 |
-
)
|
29 |
|
|
|
30 |
local_llm = HuggingFacePipeline(pipeline=pipe)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
text_spliter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
35 |
-
texts = text_spliter.split_documents(document)
|
36 |
-
embedding = HuggingFaceInstructEmbeddings()
|
37 |
-
docsearch = Chroma.from_documents(texts, embedding, persist_directory='db')
|
38 |
-
|
39 |
-
retriever = docsearch.as_retriever(search_kwargs={"k": 3})
|
40 |
-
qa_chain = RetrievalQA.from_chain_type(llm=local_llm,
|
41 |
-
chain_type="stuff",
|
42 |
-
retriever=retriever,
|
43 |
-
return_source_documents=True)
|
44 |
|
45 |
def gradinterface(query,history):
|
46 |
result = qa_chain({'query': query})
|
47 |
-
return result
|
48 |
|
49 |
|
50 |
demo = gr.ChatInterface(fn=gradinterface, title='OUR_OWN_BOT')
|
|
|
1 |
+
from langchain_community.document_loaders import TextLoader
|
2 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
5 |
from langchain.llms import HuggingFacePipeline
|
6 |
+
from transformers import pipeline
|
|
|
|
|
|
|
7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
import torch
|
10 |
+
loader = TextLoader("info.txt")
|
11 |
+
docs = loader.load()
|
12 |
+
text_splitter = RecursiveCharacterTextSplitter()
|
13 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20)
|
14 |
+
documents = text_splitter.split_documents(docs)
|
15 |
+
|
16 |
+
huggingface_embeddings = HuggingFaceBgeEmbeddings(
|
17 |
+
model_name="BAAI/bge-small-en-v1.5",
|
18 |
+
model_kwargs={'device':'cpu'},
|
19 |
+
encode_kwargs={'normalize_embeddings': True}
|
20 |
+
)
|
21 |
+
|
22 |
+
vector = FAISS.from_documents(documents, huggingface_embeddings)
|
23 |
+
retriever = vector.as_retriever()
|
24 |
|
25 |
+
model_name = "facebook/bart-base"
|
26 |
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
|
29 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
30 |
|
31 |
pipe = pipeline(
|
32 |
"text2text-generation",
|
33 |
model=model,
|
34 |
tokenizer=tokenizer,
|
35 |
+
max_length=300,
|
36 |
+
temperature=0.9,
|
37 |
+
top_p=0.9,
|
38 |
repetition_penalty=1.15,
|
39 |
do_sample=True
|
|
|
40 |
|
41 |
+
)
|
42 |
local_llm = HuggingFacePipeline(pipeline=pipe)
|
43 |
+
qa_chain = RetrievalQA.from_llm(llm=local_llm, retriever=retriever)
|
44 |
+
|
45 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def gradinterface(query,history):
|
48 |
result = qa_chain({'query': query})
|
49 |
+
return result
|
50 |
|
51 |
|
52 |
demo = gr.ChatInterface(fn=gradinterface, title='OUR_OWN_BOT')
|