Spaces:
Sleeping
Sleeping
File size: 3,598 Bytes
004667e 8366c08 0f08318 004667e 0f08318 004667e c7a88be 004667e 2856e98 004667e 8366c08 004667e a92579f 004667e 820b7cd 8366c08 004667e 8366c08 004667e 8366c08 004667e 8366c08 c65b59b b543a72 8366c08 c65b59b 8366c08 b543a72 8366c08 c65b59b 004667e 5b84489 004667e c7a88be c65b59b 004667e 8366c08 004667e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from llama_index.core.agent import ReActAgent
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import FunctionTool
from opensearchpy import OpenSearch
from gradio_client import Client
import streamlit as st
import json
import openai
import warnings
warnings.filterwarnings('ignore')
import os
openai_api_key = os.getenv("OPENAI_API_KEY")
job_id = os.getenv('job_id')
user = os.getenv('USERNAME')
password = os.getenv('PASSWORD')
host = os.getenv('HOST')
port = int(os.getenv('PORT'))
auth = (user,password)
client = openai.OpenAI(api_key=openai_api_key)
# os_client = OpenSearch(
# hosts = [{'host': host, 'port': port}],
# http_auth = auth,
# use_ssl = True,
# verify_certs = False
# )
# indices = os_client.cat.indices(format="json")
# list_of_indeces = []
# for index in indices:
# list_of_indeces.append(index['index'])
def rag_app(user_input: str) -> str:
gr_client = Client("anasmkh/QdrantVectorStore_Llamaindex")
result = gr_client.predict(
user_input=user_input,
api_name="/chat_with_ai"
)
return result
rag_tool = FunctionTool.from_defaults(fn=rag_app)
def query_generator(user_input:str) -> str:
job = job_id
response = client.fine_tuning.jobs.retrieve(job)
completion = client.chat.completions.create(
model=response.fine_tuned_model,
messages=[
{"role": "system", "content": """don't add any other text to sql query;You are a highly skilled assistant trained to translate natural language requests
into accurate and efficient OpenSearch JSON queries """
},
{"role": "user", "content": user_input}
])
return completion.choices[0].message
query_tool = FunctionTool.from_defaults(fn=query_generator)
llm = OpenAI(model="gpt-3.5-turbo", temperature=0)
agent = ReActAgent.from_tools([query_tool,rag_tool], llm=llm, verbose=True)
def implement_query(generated_query):
# st.write("Raw Query:", generated_query)
if isinstance(generated_query, str):
generated_query = generated_query.replace("'", '"')
query = json.loads(generated_query)
else:
query = generated_query
# st.write("Validated Query:", query)
# response = os_client.search(body=query)
# return response
# except json.JSONDecodeError as e:
# st.error("Error: The generated query is not valid JSON.")
# st.write(f"JSONDecodeError Details: {e}")
# except Exception as e:
# st.error(f"Error executing OpenSearch query: {e}")
# st.write(f"Exception Details: {e}")
st.subheader('OpenSearch Assistant')
user_input = st.text_input("Enter your query:", "")
if st.button("Submit"):
if user_input:
with st.spinner("Processing..."):
try:
response = agent.chat(user_input)
st.success("Query Processed Successfully!")
st.subheader("Agent Response:")
sources = response.sources
for source in sources:
st.write('Used Tool: ',source.tool_name)
if source.tool_name =='query_generator':
st.write(source.raw_output.content)
os_response = implement_query(source.raw_output.content)
st.subheader('OS Response')
st.write(os_response)
else:
st.write(source.raw_output[0][0][1])
except Exception as e:
st.error(f"Error: {e}")
else:
st.warning("Please enter a query to process.")
|