from llama_index.core.agent import ReActAgent from llama_index.llms.openai import OpenAI from llama_index.core.tools import FunctionTool from opensearchpy import OpenSearch from gradio_client import Client import streamlit as st import json import openai import warnings warnings.filterwarnings('ignore') import os openai_api_key = os.getenv("OPENAI_API_KEY") job_id = os.getenv('job_id') user = os.getenv('USERNAME') password = os.getenv('PASSWORD') host = os.getenv('HOST') port = int(os.getenv('PORT')) auth = (user,password) client = openai.OpenAI(api_key=openai_api_key) # os_client = OpenSearch( # hosts = [{'host': host, 'port': port}], # http_auth = auth, # use_ssl = True, # verify_certs = False # ) # indices = os_client.cat.indices(format="json") # list_of_indeces = [] # for index in indices: # list_of_indeces.append(index['index']) def rag_app(user_input: str) -> str: gr_client = Client("anasmkh/QdrantVectorStore_Llamaindex") result = gr_client.predict( user_input=user_input, api_name="/chat_with_ai" ) return result rag_tool = FunctionTool.from_defaults(fn=rag_app) def query_generator(user_input:str) -> str: job = job_id response = client.fine_tuning.jobs.retrieve(job) completion = client.chat.completions.create( model=response.fine_tuned_model, messages=[ {"role": "system", "content": """don't add any other text to sql query;You are a highly skilled assistant trained to translate natural language requests into accurate and efficient OpenSearch JSON queries """ }, {"role": "user", "content": user_input} ]) return completion.choices[0].message query_tool = FunctionTool.from_defaults(fn=query_generator) llm = OpenAI(model="gpt-3.5-turbo", temperature=0) agent = ReActAgent.from_tools([query_tool,rag_tool], llm=llm, verbose=True) def implement_query(generated_query): # st.write("Raw Query:", generated_query) if isinstance(generated_query, str): generated_query = generated_query.replace("'", '"') query = json.loads(generated_query) else: query = generated_query # st.write("Validated Query:", query) # response = os_client.search(body=query) # return response # except json.JSONDecodeError as e: # st.error("Error: The generated query is not valid JSON.") # st.write(f"JSONDecodeError Details: {e}") # except Exception as e: # st.error(f"Error executing OpenSearch query: {e}") # st.write(f"Exception Details: {e}") st.subheader('OpenSearch Assistant') user_input = st.text_input("Enter your query:", "") if st.button("Submit"): if user_input: with st.spinner("Processing..."): try: response = agent.chat(user_input) st.success("Query Processed Successfully!") st.subheader("Agent Response:") sources = response.sources for source in sources: st.write('Used Tool: ',source.tool_name) if source.tool_name =='query_generator': st.write(source.raw_output.content) os_response = implement_query(source.raw_output.content) st.subheader('OS Response') st.write(os_response) else: st.write(source.raw_output[0][0][1]) except Exception as e: st.error(f"Error: {e}") else: st.warning("Please enter a query to process.")