Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_fastai | |
import gradio as gr | |
from fastai.vision.all import * | |
def get_y_fn (x): | |
return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png")) | |
from albumentations import ( | |
Compose, | |
OneOf, | |
ElasticTransform, | |
GridDistortion, | |
OpticalDistortion, | |
HorizontalFlip, | |
Rotate, | |
Transpose, | |
CLAHE, | |
ShiftScaleRotate, | |
RandomBrightnessContrast, | |
GaussNoise | |
) | |
class SegmentationAlbumentationsTransform(ItemTransform): | |
split_idx = 0 | |
def __init__(self, aug): | |
self.aug = aug | |
def encodes(self, x): | |
img,mask = x | |
aug = self.aug(image=np.array(img), mask=np.array(mask)) | |
return PILImage.create(aug["image"]), PILMask.create(aug["mask"]) | |
class TargetMaskConvertTransform(ItemTransform): | |
def __init__(self): | |
pass | |
def encodes(self, x): | |
img,mask = x | |
#Convert to array | |
mask = np.array(mask) | |
# Uvas | |
mask[mask==255]=1 | |
# Hojas | |
mask[mask==150]=2 | |
# Poste | |
mask[mask==76]=3 | |
mask[mask==74]=3 | |
# Madera | |
mask[mask==29]=4 | |
mask[mask==25]=4 | |
# Back to PILMask | |
mask = PILMask.create(mask) | |
return img, mask | |
repo_id = "ancebuc/grapes-segmentation" | |
learner = from_pretrained_fastai(repo_id) | |
aux = learner.model | |
aux = aux.cpu() | |
import torchvision.transforms as transforms | |
img = PILImage.create('color_158.jpg') | |
transformer=transforms.Compose([transforms.Resize((480,640)), | |
transforms.ToTensor(), | |
transforms.Normalize( | |
[0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225])]) | |
img=transformer(img).unsqueeze(0) | |
img=img.cpu() | |
model=torch.jit.trace(aux, (img)) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.cpu() | |
model.eval() | |
model.to(device) | |
import torchvision.transforms as transforms | |
def transform_image(image): | |
my_transforms = transforms.Compose([transforms.ToTensor(), | |
transforms.Normalize( | |
[0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225])]) | |
image_aux = image | |
return my_transforms(image_aux).unsqueeze(0).to(device) | |
# Definimos una función que se encarga de llevar a cabo las predicciones | |
def predict(img): | |
img = PILImage.create(img) | |
image = transforms.Resize((480,640))(img) | |
tensor = transform_image(image=image) | |
with torch.no_grad(): | |
outputs = model(tensor) | |
outputs = torch.argmax(outputs,1) | |
mask = np.array(outputs.cpu()) | |
mask = np.reshape(mask,(480,640)) | |
# Añadimos una dimesionalidad para colocar color | |
mask = np.expand_dims(mask, axis=2) | |
# Y añadimos los tres canales | |
mask = np.repeat(mask, 3, axis=2) | |
# Creamos las máscaras | |
uvas = np.all(mask == [1, 1, 1], axis=2) | |
hojas = np.all(mask == [2, 2, 2], axis=2) | |
poste = np.all(mask == [3, 3, 3], axis=2) | |
madera = np.all(mask == [4, 4, 4], axis=2) | |
# Uvas | |
mask[uvas] = [255, 255, 255] | |
# Hojas | |
mask[hojas] = [0, 255, 0] | |
# Poste | |
mask[poste] = [0, 0, 255] | |
# Madera | |
mask[madera] = [255, 0, 0] | |
return Image.fromarray(mask.astype('uint8')) | |
# Creamos la interfaz y la lanzamos. | |
gr.Interface(fn=predict, inputs="image", outputs="image",examples=['color_158.jpg','color_157.jpg']).launch(share=False) |